• 제목/요약/키워드: Strain improvement

검색결과 627건 처리시간 0.033초

제 1차 한.중 생명공학 심포지움 (Practice of industrial strain improvement)

  • Lei, Zhao-zu
    • 미생물과산업
    • /
    • 제19권2호
    • /
    • pp.34-41
    • /
    • 1993
  • Industrial strain improvement is concerned with developing or modifying microorganisms used in production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific characteristics such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empirical approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids, organic acids and enzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is a homoserine auxotroph with AEC, TA double metabolic analogue resistant markers. The yield reaches 100 g/l. Besides, the citric acid-producing organism Aspergillus niger, Co827, its productivity reaches the advanced level in the world, is also the result of a series mutations especially with $^60Co{\gamma}$-radiation. The thermostable .alpha.-amylase producing strain A 4041 is the third example. By combining physical and chemical mutations, the strain A 4041 becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The .alpha.-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus niger SP56, its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV-11. Recently, recombinant DNA approach provides a worthwhile alternative strategy to industrial strain improvement. This technique had been used by us to increase the thermostable .alpha.-amylase production and on some genetic researches.

  • PDF

국내기탁기관의 현황 2

  • 오두환
    • 미생물과산업
    • /
    • 제15권1호
    • /
    • pp.38-42
    • /
    • 1989
  • Industrial strain Improvement is concerned with developing or modifying microorga-nisms used In production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific cilarafteristic such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empiri-cal approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids. organic acids andenzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is it homoserine auxotroph with AEC, TA double metabolicanalogue resistant markers. The yield reaches 100g/1. Resides, the citric acid-producing organism Aspergillus nuger, Co827, its productivity reches the advanced level in the world, is also the result of a series mutations expecially with Co Y-radiation. The thermostable a-amylaseroducing strain A 4041 is the third example. By combining physical and chemical multations. the strain ,A 4041becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The a-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus nigerSP56 its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV_11. Recently recombinant DNA approach Provides a worth while alternative strategy to Industrial strain improve-ment. This technique had been used by us to increase the thermostable a-amylase production and on some genetic researches.

  • PDF

Free strain analysis of the performance of vertical drains for soft soil improvement

  • Basack, Sudip;Nimbalkar, Sanjay
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.963-975
    • /
    • 2017
  • Improvement of soft clay deposit by preloading with vertical drains is one of the most popular techniques followed worldwide. These drains accelerate the rate of consolidation by shortening the drainage path. Although the analytical and numerical solutions available are mostly based on equal strain hypothesis, the adoption of free strain analysis is more realistic because of the flexible nature of the imposed surcharge loading, especially for the embankment loading used for transport infrastructure. In this paper, a numerical model has been developed based on free strain hypothesis for understanding the behaviour of soft ground improvement by vertical drain with preloading. The unit cell analogy is used and the effect of smear has been incorporated. The model has been validated by comparing with available field test results and thereafter, a hypothetical case study is done using the available field data for soft clay deposit existing in the eastern part of Australia and important conclusions are drawn therefrom.

마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상 (Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique)

  • 김동일;허용학;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1442-1445
    • /
    • 2005
  • Several test methods, including micro strain/deformation measurement techniques, have been studied to more reliably measure the micro properties in micro/nano materials. Therefore, in this study, the continuous measurement of in-plane tensile strain in micro-sized specimens of thin film materials was introduced using the micro-ESPI technique. TiN and Au thin films 1 and $0.47\;\mu{m}$ thick, respectively, were deposited on the silicon wafer and fabricated into the micro-sized tensile specimens using the electromachining process. The micro-tensile loading system and micro-ESPI system were developed to measure the tensile strain during micro-tensile test. The micro-tensile stress-strain for these materials was determined using the algorithm for continuous strain measurement. Furthermore, algorithm for enhancing the sensitivity to measurement of in-plane tensile strain was suggested. According to the algorithm for enhancement of sensitivity, micro-tensile strain data between interfringe were calculated. It is shown that the algorithm for enhancement of the sensitivity suggested in this study makes the sensitivity to the in-plane tensile strain increase.

  • PDF

Strain Improvement of Candida tropicalis for the Production of Xylitol: Biochemical and Physiological Characterization of Wild-type and Mutant Strain CT-OMV5

  • Rao Ravella Sreenivas;Jyothi Cherukuri Pavanna;Prakasham Reddy Shetty;Rao Chaganti Subba;Sarma Ponnupalli Nageshwara;Rao Linga Venkateswar
    • Journal of Microbiology
    • /
    • 제44권1호
    • /
    • pp.113-120
    • /
    • 2006
  • Candida tropicalis was treated with ultraviolet (UV) rays, and the mutants obtained were screened for xylitol production. One of the mutants, the UV1 produced 0.81g of xylitol per gram of xylose. This was further mutated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and the mutants obtained were screened for xylitol production. One of the mutants (CT-OMV5) produced 0.85g/g of xylitol from xylose. Xylitol production improved to 0.87 g/g of xylose with this strain when the production medium was supplemented with urea. The CT-OMV5 mutant strain differs by 12 tests when compared to the wild-type Candida tropicalis strain. The XR activity was higher in mutant CT-OMV5. The distinct difference between the mutant and wild-type strain is the presence of numerous chlamvdospores in the mutant. In this investigation, we have demonstrated that mutagenesis was successful in generating a superior xylitol-producing strain, CT-OMV5, and uncovered distinctive biochemical and physiological characteristics of the wild-type and mutant strain, CT-OMV5.

마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상 (Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique)

  • 김동일;기창두;허용학
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.54-63
    • /
    • 2006
  • Enhancement methods of sensitivity to in-plane strain measurement by micro-ESPI(Electronic Speckle Pattern Interferometry) technique were proposed using TiN and Au thin films. Micro-tensile strain over the micro-tensile specimens, prepared in micro-scale by those films, was measured by micro-tensile loading system and micro-ESPI system developed in this study. The subsequent measurement of in-plane tensile strain in the micro-sized specimens was introduced using the micro-ESPI technique, and the micro-tensile stress-strain curves for these films were determined. To enhance the sensitivity to measurement of in-plane tensile strain, algorithms of the phase estimation by using curve fitting of inter-fringe and the discrete Fourier Transform with object-induced dynamic phase shifting were developed. Using these two algorithms, the micro-tensile strain-stress curves were generated. It is shown that the algorithms for enhancement of the sensitivity suggested in this study make the sensitivity to measurement of the in-plane tensile strain increase.

지중 연성관의 거동특성 분석 (Analysis of Behavior for Underground Flexible Pipes)

  • 김경열;상현규;이대수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.315-322
    • /
    • 2001
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various depth are calculated using traditional formula and FEM analysis. The results show that theoretical values are more conservative in strain whereas FEM analysis gives larger stress. Considering the strain criteria - 3.5 %, maximum, flexible pipes can be buried at the range of 50cm to 5m in depth without additional soil improvement.

  • PDF

Identification of Potential Target Genes Involved in Doxorubicin Overproduction Using Streptomyces DNA Microarray Systems

  • Kang, Seung-Hoon;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.82-85
    • /
    • 2005
  • Doxorubicin is a highly-valuable anthracycline-family polyketide drug with a very potent anticancer activity, typically produced by a Gram-positive soil bacterium called Streptomyces peucetius. Thanks to the recent development of Streptomyces genomics-based technologies, the random mutagenesis approach for Streptomyces strain improvement has been switched toward the genomics-based technologies including the application of DNA microarray systems. In order to identify and characterize the genomics-driven potential target genes critical for doxorubincin overproduction, three different types of doxorubicin overproducing strains, a dnrI(doxorubicin-specific positive regulatory gene)-overexpressor, a doxA (gene involved in the conversion from daunorubicin to doxorubicin)-overexpressor, and a recursively-mutated industrial strain, were generated and examined their genomic transcription profiles using Streptomyces DNA microarray systems. The DNA microarray results revealed several potential target genes in S. peucetius genome, whose expressions were significantly either up- or down-regulated comparing with the wild-type strain. A systematic understanding of doxorubicin overproduction at the genomic level presented in this research should lead us a rational design of molecular genetic strain improvement strategy.

  • PDF

증기 터빈축 강재의 장시간 크리프 수명 예측법 개선 (Improvement of long-time creep life prediction of steam turbine rotor steel)

  • 오세규;정순억;전태언
    • 한국해양공학회지
    • /
    • 제10권1호
    • /
    • pp.47-52
    • /
    • 1996
  • This paper deals with a study on improvement of long-time creep life prediction of steam turbine rotor steels by using initial strain method as a new approach at high temperatures of 500 to 70$0^{\circ}C$ . The main result shows that the inital strain method could be reliably utilized to predict and evaluate the long-time creep life as creep rupture strength and that the predicting equation for long-time creep life under a certain creep stress at a certain high temperature could be empirically derived out from each initial instantaneous strain measured.

  • PDF

Strain Improvement of Yeast for Ethanol Production Using a Combined Treatment of Electric Field and Chemical Mutagen N-Methyl-N'-nitro-N- nitrosoguanidine

  • Kim, Keun;Lee, Jae-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권2호
    • /
    • pp.119-123
    • /
    • 1998
  • The feasibility of using combined treatments of electric field and chemical mutagen N-methyl-N'-nitro-N-nitroso-guanidine (NTG) for the strain improvement of Saccharomyces sp. in ethanol production was examined. The treatment of electric field alone resulted in no effect on the lethality of yeast cells under the conditions of this study. However, when the electric field was applied together to the treatment of yeast cells with NTG, the electric field increased the lethal effect and auxotrophic mutation rate of NTG. The combined treatment of electric field and NTG also increased the chances of. obtaining superior yeast strains for the ethanol production from tapioca. A higher number of improved clones was obtained by the combined treatments of electric field and NTG than by the NTG treatment alone. The best clone, NF 30-9, which was also obtained by the combined treatment, produced $11.07\%$ (w/v) ethanol from tapioca slurry containing 25% (w/v) reducing sugar while the parental strain produced 9.77% (w/v).

  • PDF