• 제목/요약/키워드: Strain gradient

검색결과 383건 처리시간 0.021초

광섬유 격자 센서를 이용한 모르타르시편의 온도구배 및 열 변형 측정 (Measurements of Thermal Gradient and Thermal Strain of Mortar Specimens Using Fiber Bragg Grating Sensor)

  • 임홍철;이은주;전흥재;박동녘
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.133-138
    • /
    • 2003
  • FBG sensor의 다중 측정성을 이용하여 모르타르 시편의 열 변형률과 온도 변화를 동시에 측정하였다. 또한, 광섬유 격자 센서를 이용하여, 열 변화에 따른 모르타르 시편의 내부 온도 구배를 측정하였다. 열 변형률을 기존 strain gauge와 함께 측정하였을 때, strain gauge는 섭씨 60도 이상의 온도에서 오차를 보이는 반면, FBG 센서는 안정된 측정값을 나타냈다. FBG 온도 sensor로 측정한 온도 변화량은 thermocouple로 측정한 값과 비교하였으며, 선형적인 대응관계를 보였다.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.645-656
    • /
    • 2018
  • Importance of procuring adequate knowledge about the mechanical behavior of double-layered graphene sheets (DLGSs) incensed the authors to investigate wave propagation responses of mentioned element while rested on a visco-Pasternak medium under hygro-thermal loading. A nonlocal strain gradient theory (NSGT) is exploited to present a more reliable size-dependent mechanical analysis by capturing both softening and hardening effects of small scale. Furthermore, in the framework of a classical plate theory the kinematic relations are developed. Incorporating kinematic relations with the definition of Hamilton's principle, the Euler-Lagrange equations of each of the layers are derived separately. Afterwards, combining Euler-Lagrange equations with those of the NSGT the nonlocal governing equations are written in terms of displacement fields. Interaction of the each of the graphene sheets with another one is regarded by the means of vdW model. Then, a widespread analytical solution is employed to solve the derived equations and obtain wave frequency values. Subsequently, influence of each participant variable containing nonlocal parameter, length scale parameter, foundation parameters, temperature gradient and moisture concentration is studied by plotting various figures.

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

A laminated composite plate finite element a-priori corrected for locking

  • Filho, Joao Elias Abdalla;Belo, Ivan Moura;Pereira, Michele Schunemann
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.603-633
    • /
    • 2008
  • A four-node plate finite element for the analysis of laminated composites which is developed using strain gradient notation is presented. The element is based on a first-order shear deformation theory and on the equivalent lamina assumption. Strains and stresses can be calculated at different points through the thickness of the plate. They are averaged values due to the equivalent lamina assumption. A shear correction factor is used as the transverse shear strain is taken to be constant over the plate thickness while its actual variation is parabolic. Strain gradient notation, which is physically interpretable, allows for the detailed a-priori analysis of the finite element model. The polynomial expansions are inspected and spurious terms responsible for modeling errors are identified in the shear strains polynomial expansions. The element is corrected by simply removing the spurious terms from the shear strains expansions. The element is implemented into a FORTRAN finite element code in two versions; namely, with and without spurious terms. Results are compared to show the effects of the spurious terms on the solutions. It is also shown that a refined mesh composed of corrected elements provides solutions which approximate very well the analytical solutions, validating the procedure.

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

Alloy718의 비틀림변형과 동적재결정 (Deformation Behavior and Dynamic Recrystallization of Torsion-Tested Alloy 718)

  • 박노광;김정한;김남용;이동근;염종택
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.591-596
    • /
    • 2006
  • Torsion testing was employed to investigate the deformation and recrystallization behavior of coarse-grained Alloy 718, and the results are compared with the compression testing results. Mechanical testing was conducted on bulk Alloy718 samples within the temperature ranges, $1000^{\circ}C{\sim}1100^{\circ}C$. The strain gradient formed in the torsion specimens resulted in a recrystallization behavior which varied along the radial direction from the center to the surface. The flow curves based on effective stress and effective strain as obtained by Fields and Backofen's isotropic deformation theory and the dynamic recrystallization within the compression tested samples and torsion tested samples are different. The different deformation and recrystallization behavior can be rationalized by the fact that the deformation in the coarse-grained torsion specimens is not uniform and thus the strain gradient within the specimens cannot be analytically predicted by FE simulation. Thus, the extent of recrystallization cannot be properly predicted by the established recrystallization equations based on compression tests.

닥터블레이드법에 의한 PLZT계 경사기능 압전 엑튜에이터의 제조와 압전 변위 특성 (Fabrication and Piezoelectric Strain Characteristics of PLZT Functionally Gradient Piezoelectric Actuator by Doctor Blade Process)

  • 김한수;최승철;이전국;정형진
    • 한국세라믹학회지
    • /
    • 제29권9호
    • /
    • pp.695-704
    • /
    • 1992
  • In (Pb, La)(Zr, Ti)O3 ceramic system, the functionally gradient material (FGM) was developed, and its processing and properties were investigated. The FGMs were successfully prepared through doctor blade method with acrylic binder system as well as mold stacking press method. The ultrasonic treatment was very effective for particle dispersion in slurry, and it lead to form clack-free green films. The strain-voltage characteristics of the FGM system was significantly improved which fabricated between a high piezoelectric-low dielectric and a low piezoelectric-high dielectric composition layer.

  • PDF

보이드 성장을 고려한 재료의 성형한계에 대한 비 국소 해석 (Non-Local Analysis of Forming Limits of Ductile Material Considering Damage Growth)

  • 김영석;원성연
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.914-922
    • /
    • 2003
  • In this paper, the strain localization of voided ductile material has been analyzed by nonlocal plasticity formulation in which the yield strength not only depends on an equivalent plastic strain measure (hardening parameter), but also on the Laplacian thereof. The gradient terms in yield criterion show an important role on modeling strain-softening phenomena of material. The influence of the mesh size on the elastic -plastic deformation behavior and the effect of the characteristic length parameter for localization prediction are also investigated. The proposed nonlocal plasticity shows that the load -strain curves converge to one curve. Results using nonlocal plasticity also exhibit the dependence of mesh size is much less sensitivity than that for a corresponding local plasticity formulation.

열간 판재단조시 강괴 내부의 기공폐쇄에 관한 연구 (Study on Internal Void Closure in Slab ingot during Hot Plate Forging)

  • 조종래;김동권;김영득;이부윤
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.18-26
    • /
    • 1996
  • In order to investigate the effect of pre-cooling of ingot on void closure in hot plate forging the internal strain and stress distributions are examined quantitatively by using ABAQUS. Simula-tions are carried out on a large slab ingot having the same temperature and the temperature gradient induced by air-cooling. It is shown that pre-cooling produces little effect on the strain behavior but remarkable effect on the hydrostatic stress at the central zone of ingot. The main factors for crushing micro-voids are the effective strain and the time integral of hydrostatic stress in the region surrounding the voids. Based on regression analysis it was found that the distortion of void can be expressed as a polynomial function of the two factors.

  • PDF