• Title/Summary/Keyword: Strain difference

Search Result 1,104, Processing Time 0.031 seconds

Stress Induced Phosphate Solubilization by Aspergillus awamori bxq33110 Isolated from Waste Mushroom Bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Song, June-Seob;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.428-434
    • /
    • 2012
  • A fungal strain, capable of solubilizing insoluble phosphate under diverse temperature, pH and salt conditions was isolated from Waste Mushroom bed of Agaricus bisporus in South Korea. Based on 18S rRNA analysis, the strain was identified as Aspergillus awamori bxq33110. The strain showed maximum phosphate solubilization in AYG medium (525 ${\mu}g\;mL^{-1}$) followed by NBRIP medium (515 ${\mu}g\;mL^{-1}$). The strain solubilized $Ca_3(PO_4)_2$ to a greater extent and rock phosphate and $FePO_4$ to a certain extent. However $AlPO_4$ solubilizing ability of the strain was found to be very low. Glucose at the rate of 2% ($561{\mu}g\;mL^{-1}$) was found be the best carbon source for Aspergillus awamori bxq33110 to solubilize maximum amount of phosphate. However, no significant difference ($P{\leq}0.05$) in phosphorus solubilization was found between 1% and 2% glucose concentrations. $(NH_4)_2SO_4$ was the best nitrogen source for Aspergillus awamori bxq33110 followed by $NH_4Cl$ and $NH_4NO_3$. At pH 7, temperature $30^{\circ}C$ and 5% salt concentration (674 ${\mu}g\;mL^{-1}$) were found to be the optimal conditions for insoluble phosphate solubilization. However, strain Aspergillus awamori bxq33110 was shown to have the ability to solublize phosphate under different stress conditions at $30-40^{\circ}C$ temperature, pH 7-10 and 0-10% salt concentrations indicating it's potential to be used as bio-inoculants in different environmental conditions.

Characteristics of ustilago maydis virus of SH14 killer strain isolated in Korea

  • Hwang, Seon-Hee;Jung, Cheong-Hwan;Yie, Se-Won
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.154-159
    • /
    • 1995
  • SH-14, a novel killer strain of Ustilago maydis was isolated in Korea. It has been reported in other papers that the toxin specificity and double-stranded RNA pattern of SH-14 strain were different from other laboratory strains. In this paper, we analyzed the biochemical characteristics of U. maydis SH-14 virus. Three distinctive peaks were isolated from CsCl density gradient, designated as top (T), intermediate (I) and bottom (B) components. We found that the densities of each components, 1.285, 1.408 g/cm$\^$3/, respectively, are very similar to those of other strains. As previously reported by the analysis of dsRNA in each component, the dsRNA segments are separately encapsidated. Capsid protein of SH-14 virus consists of two proteins about 70 Kd shown by SDS-PAGE analysis. Electron microscopic examination of the virus particles revealed that UmV particles are very similar in size and morphology to all isolates as well as all lab-strains. In order to test immunological cross reactivity of UmV, werstern bolt analysis was carriedout with antiserum against A8 virus. All capsid protein had positive reaction against A8 antibody which indicated that UmV are immunologically cross-reactive with all isolates from Korea. The results presented in this paper may show that UmV isolated from SH-14 strain has very similar biochemical characteristics to those of other UmV. However, the difference in the toxin specificity and the molecular weight of toxin protein from the SH-14 strain has us to conclude that U. maydis SH-14 strain is a new killer type.

  • PDF

Prediction of the Stress-Strain Curve of Materials under Uniaxial Compression by Using LSTM Recurrent Neural Network (LSTM 순환 신경망을 이용한 재료의 단축하중 하에서의 응력-변형률 곡선 예측 연구)

  • Byun, Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2018
  • LSTM (Long Short-Term Memory) algorithm which is a kind of recurrent neural network was used to establish a model to predict the stress-strain curve of an material under uniaxial compression. The model was established from the stress-strain data from uniaxial compression tests of silica-gypsum specimens. After training the model, it can predict the behavior of the material up to the failure state by using an early stage of stress-strain curve whose stress is very low. Because the LSTM neural network predict a value by using the previous state of data and proceed forward step by step, a higher error was found at the prediction of higher stress state due to the accumulation of error. However, this model generally predict the stress-strain curve with high accuracy. The accuracy of both LSTM and tangential prediction models increased with increased length of input data, while a difference in performance between them decreased as the amount of input data increased. LSTM model showed relatively superior performance to the tangential prediction when only few input data was given, which enhanced the necessity for application of the model.

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.

A Study on the Low Cycle Fatigue Characteristics for the Structural Low Carbon Steels (構造용 低炭素鋼材의 低사이클 疲勞特性에 관한 硏究)

  • 김영식;노재충;한명수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.307-315
    • /
    • 1989
  • In recent years, the fatigue design method by analysis for the mechanical components and the welded structures has much increased, instead of the fatigue design method by rule that has been widely used from the past days. When a fatigue design is conducted by that method, the basic informations, fatigue life curves are mainly obtained from the results of the strain controlled low cycle fatigue test. From these point of views, the low cycle fatigue test is coming to be given a much importance lately. In this paper, the strain controlled low cycle fatigue properties at room temperature in air environment were investigated for the low carbon forged steel, SF45A, and the rolled steel for the welded structure, SM 41B. Throughout the test, strain ratio, R, was maintained constant with the fully reversed condition, -1. As the experimental results, the cyclic stress-strain behaviours of the test materials were different each other, but the low cycle fatigue life-time of them appeared to show little difference in the region of this test conditions.

Characteristics of the symbionts Pseudomonas sp. J2W strain and Xanthomonas sp. J2Y strain which utilize polyvinyl alcohol (Polyvinyl alcohol 이용 공생균 Pseudomonas sp. J2W와 Xanthomonas sp. J2Y의 특성)

  • Jo, Youn-Lae
    • Applied Biological Chemistry
    • /
    • v.35 no.1
    • /
    • pp.30-35
    • /
    • 1992
  • Two strains J2W and J2Y which were isolated from soil can utilize polyvinyl alcohol(PVA) as a sole carbon source. PVA was utilized symbiotically by the mixed culture of these two strains which could not utilize PVA in each respective pure culture. Effect of degree of PVA polymerization on the its utilization was examed, and there was remarkable difference among three kind of PVA(PVA 500, 1500 and 2000). The reconstruction of there two strains was carried out with other symbionts Pseudomonas sp. PW and Pseudomonas sp. G5Y which were able to utilize PVA. PVA utilization occured in each remixed culture of J2Y strain with Pseudomonas sp. PW J2W strain with Pseudomonas sp. G5Y, respectively. Identification of bacteria was based on morphological and biological chatacteristics, J2W and J2Y strain were similar to a strain of Pseudomonas pseudimallei and Xanthomonas campestris, respectively.

  • PDF

Possible Negative Effect of Pigmentation on Biosynthesis of Polyketide Mycotoxin Zearalenone in Gibberella zeae

  • Jung Sun-Yo;Kim Jung-Eun;Yun Sung-Hwan;Lee Yin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1392-1398
    • /
    • 2006
  • We investigated a possible coordination between the biosyntheses of two polyketides in the cereal head blight fungus Gibberella zeae, zearalenone (ZEA) and aurofusarin (AUR), which are catalyzed by the polyketide synthases (PKS) PKS4/PKS13 and PKS12, respectively. To determine if the production of one polyketide influences that of the other, we used four different transgenic strains of G zeae; three were deficient for either ZEA or AUR or both, and one was an AUR-overproducing strain. The mycelia of both the wild-type and ${\Delta}PKS4$ strain deficient for ZEA produced AUR normally, whereas the mycelia of both the ${\Delta}PKS12$ and ${\Delta}PKS4::{\Delta}PKS12$ strain showed no AUR accumulation. All the examined deletion strains caused necrotic spots on the surface of com kernels and were found to produce the nonpolyketide mycotoxins trichothecenes to the same amount as the wild-type strain. In contrast, the AUR-deficient ${\Delta}PKS12$ strains produced greater quantities of ZEA and its derivatives than the wild-type progenitor on both a rice substrate and a liquid medium; the AUR-overproducing strain did not produce ZEA on either medium. Furthermore, the expression of both PKS4 and PKS13 was induced earlier in the ${\Delta}PKS12$ strains than in the wild-type strain, and there was no difference in the transcription of PKS12 between the two strains. Therefore, these results indicate that the ZEA biosynthetic pathway is negatively regulated by the accumulation of another polyketide (AUR) in G zeae.

A STUDY OF THE STRESS TRANSMISSION OF VARIOUS ARTIFICIAL TEETH AND DENTURE BASE MATERIALS TO THE UNDER-LYING SUPPORTING TISSUES (인공치와 의치상의 재질에 따른 의치상 하부 지지조직에의 응력전달에 관한 연구)

  • Chung, Hyun-Gun;Chung, Moon-Kyu;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.79-100
    • /
    • 1989
  • The Purpose of this study was to investigate material differences in stress transmission among various artificial teeth and denture base materials. For this study, a two-dimensional finite element model and a two-dimensional photoelastic model of a mandible with complete denture were made. A resin tooth and a porcelain tooth were used as artificial teeth, and a resin base, a metal lined base, and a soft-liner lined base were used as denture bases. An occlusal load was applied and principal stresses generated in the supporting tissues were compared. To test the impact stress transmission, strain gauge attached to the denture base specimens made of the different materials were made in thick and thin groups. Voltage outputs from hitting the specimen with a steel ball were compared. The results were as follows : 1. In FEM, increasing the mucosal thickness reduced the maximum principal stresses in the supporting tissues, but altering the tooth materials and the base materials induced no difference in the stresses. 2. In photoelastic model study, no difference in fringe order among the specimens were observed, but the thick mucosa group and the soft-liner lined group revealed a more uniform distribution of the load. 3. In strain measuring, the impact force transmission was highest in the soft-liner lined group, and was the lowest in the metal lined group(p<0.01). 4. In the thin group using the resin base, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the thick group. In the soft-liner lined group, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the metal lined group. 5. The thick group showed lower impact stress transmission than the thin group(p<0.01).

  • PDF

Preliminary Experiment for High-resolution Measurement of Tissue Mechanical Properties Using Dynamic Optical Coherence Elastography (동적 광단층 탄성영상법을 이용한 조직의 고해상도 기계적 성질 측정을 위한 예비 실험)

  • Kwon, Daa Young;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.99-103
    • /
    • 2018
  • Optical coherence elastography (OCE) is based on optical coherence tomography (OCT), which is a noninvasive, high-resolution, cross-sectional imaging technique. In this paper, we have developed dynamic optical coherence elastography to measure elasticity, a mechanical property of tissue, by phase difference. A piezoelectric actuator was used for sinusoidal mechanical loading of samples. Before applying this method to biomaterial, we assessed the feasibility of OCE with samples of sponge, eraser, and sharp lead. Cross-sectional and phase-difference images of the sample were obtained under sinusoidal loading. The strain rate was calculated from the phase-difference information. To obtain the envelope of the phase-difference oscillations along the horizontal direction, Hilbert transformation was performed at each depth. The elevation of the envelope was represented by color mapping, and we could measure the relative elasticity within the sample by comparing the elevations. Finally, there was an advantage when we calculated the shear rate using self-interference in the sample arm, instead of the interference between sample and reference arms.

Sigma S Involved in Bacterial Survival of Ralstonia pseudosolanacearum (Ralstonia pseudosolanacearum 생존에 관여하는 Sigma S 역할)

  • Hye Kyung Choi;Eun Jeong Jo;Jee Eun Heo;Hyun Gi Kong;Seon-Woo Lee
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.148-156
    • /
    • 2024
  • Ralstonia pseudosolanacearum, a plant pathogenic bacterium that can survive for a long time in soil and water, causes lethal wilt in the Solanaceae family. Sigma S is a part of the RNA polymerase complex, which regulates gene expression during bacterial stress response or stationary phase. In this study, we investigated the role of sigma S in R. pseudosolanacearum under stress conditions using a rpoS-defective mutant strain of R. pseudosolanacearum and its wild-type strain. The phenotypes of rpoS-defective mutant were complemented by introducing the original rpoS gene. There were no differences observed in bacterial growth rate and exopolysaccharide production between the wild-type strain and the rpoS mutant. However, the wild-type strain responded more sensitively to nutrient deficiency compared to the mutant strain. Under the nutrient deficiency, the rpoS mutant maintained a high bacterial viability for a longer period, while the viability of the wild-type strain declined rapidly. Furthermore, a significant difference in pH was observed between the culture supernatant of the wild-type strain and the mutant strain. The pH of the culture supernatant for the wild-type strain decreased rapidly during bacterial growth, leading to medium acidification. The rapid decline in the wild-type strain's viability may be associated with medium acidification and bacterial sensitivity to acidity during transition to the stationary phase. Interestingly, the rpoS mutant strain cannot utilize acetic acid, D-alanine, D-trehalose, and L-histidine. These results suggest that sigma S of R. pseudosolanacearum regulates the production or utilization of organic acids and controls cell death during stationary phase under nutrient deficiency.