• 제목/요약/키워드: Strain changes

검색결과 1,038건 처리시간 0.024초

Increasing the performance of energy harvesting in vibration mode shapes

  • Jabbari, Majid;Ghayour, Mostafa;Mirdamadi, Hamid Reza
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.155-173
    • /
    • 2016
  • This paper presents a method of design for the energy harvesting of a piezoelectric cantilever beam. Vibration modes have strain nodes where the strain distribution changes in the direction of the beam length. Covering the strain nodes of the vibration modes with continuous electrodes effects a cancellation of the voltages outputs. The use of segmented electrodes avoids cancellations of the voltage for multi-mode vibration. The resistive load affects the voltage and generated power. The optimum resistive load is considered for segmented and continuous electrodes, and then the power output is verified. One of the effective parameters on energy harvesting performance is the existence of concentrated mass. This topic is studied in this paper. Resonance and off-resonance cases are considered for the harvester. In this paper, both theoretical and experimental methods are used for satisfactory results.

Analysis of the strain energy release rate for time-dependent delamination in multilayered beams with creep

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.41-57
    • /
    • 2022
  • This paper is focused on delamination analysis of a multilayered inhomogeneous viscoelastic beam subjected to linear creep under constant applied stress. The viscoelastic model that is used to treat the creep consists of consecutively connected units. Each unit consists of one spring and two dashpots. The number of units in the model is arbitrary. The modulus of elasticity of the spring in each unit changes with time. Besides, the modulii of elasticity and the coefficients of viscosity change continuously along the thickness, width and length in each layer since the material is continuously inhomogeneous in each layer of the beam. A time-dependent solution to the strain energy release rate for the delamination is derived. A time-dependent solution to the J-integral is derived too. A parametric analysis of the strain energy release rate is carried-out by applying the solution derived. The influence of various factors such as creep, material inhomogeneity, the change of the modulii of elasticity with time and the number of units in the viscoelastic model on the strain energy release rate are clarified.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Multilayered viscoelastic beam loaded in torsion under strain-path control: A delamination analysis

  • Victor I. Rizov
    • Advances in materials Research
    • /
    • 제13권2호
    • /
    • pp.87-102
    • /
    • 2024
  • This paper is focused on the delamination analysis of a multilayered beam structure loaded in torsion under strain-path control. The beam under consideration has a rectangular cross-section. The layers of the beam are made of different viscoelastic materials which exhibit continuous inhomogeneity in longitudinal direction. Since the delamination is located inside the beam structure, the torsion moments in the two crack arms are obtained by modeling the beam as an internally static undetermined structure. The strain energy stored in the beam is analyzed in order to derive the strain energy release rate (SERR). Since the delamination is located inside the beam, the delamination has two tips. Thus, solutions of the SERR are obtained for both tips. The solutions are verified by analyzing the beam compliance. Delamination analysis with bending-torsion coupling is also performed. The solutions derived are timedependent due to two factors. First, the beam has viscoelastic behavior and, second, the angle of twist of the beam-free end induced by the external torsion moment changes with time according to a law that is fixed in advance.

돌연변이에 의한 Aspergillus flavus의 아밀라아제 생성능의 개량 (Further induction of amylase producing mutants from a highly proteolytic mutant strain of asppergillus flavus)

  • 이영록;고상균;김봉수
    • 미생물학회지
    • /
    • 제18권4호
    • /
    • pp.161-171
    • /
    • 1980
  • A mutant strain having increased productivity of both enzymes, protease and amylase, was obtained from A. flavus KU 153, isolatd from South Korea for its high protease production by successive ultra-violet light irradiation, Two glucoamylases from the mutant strain selected were purified from wheat branculture by successive salting out, followed by dialysis and column chromatography, and their characteristics were compared with those of the wild strain. Glucoamylase production of the mutant selected was increased about 3.3 times compared with the wild strain, and 2.1 times compared with the parental strain, ${\alpha}-amylase$ activity of the mutant selected was about 2 times hugher than that of the wild strain or the parental strain. Protease and cellulase productivities of the muant selected were all alike compared with those of the highly proteolytic mutant, the parental strain. Therefore, it was considered that the back mutation on the protease production did not occurred in the formation process of the glucoamylase producing mutant. Total activities of glucoamylase I and II from the mutant selected were 2.86 and 3.65 times higher compared with those from the wild strain, respectively. Considering the optimal pH-thermal stability and Km-Vmax value of glucoamylase I and II from both strains, wild and mutant, it was deduced that the characteristics of glucoamylase I and II from the wild strain did not altered during the mutation process. Therefore, it was concluded that the selected mutant did not induce the formation of another glucoamylase isozyme, or the changes in the characteristics of the glucoamylase, but induce the productivity of the same glucoamylase I and II by the action of regulatory gene.

  • PDF

Feedback scope for fault detection and localization

  • Hunsang Jung;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.32.6-32
    • /
    • 2002
  • The damage localization of the structural system using the natural frequency measurement only is proposed. The existing methods use the changes of mode shape, strain mode shape or curvature mode shape before and after the damage occurrence as these shapes carry the geometric information of the structure. Basically, the change of natural frequencies of the structure can be used as the indicator of the damage occurrence but not as the indicator of the damage location as the natural frequency changes does not carry the geometric information of the structure. In this research, the feedback scope method that measures the natural frequency changes of the structure with and without the feedback Ioo...

  • PDF

응력-변형률 관계 정식화의 적용성(II) -파라메타의 경향성- (Application of Modelling Stress-Strain Relations (Part II) -A Trend of Parameters-)

  • 박춘식
    • 한국지반공학회논문집
    • /
    • 제29권10호
    • /
    • pp.19-27
    • /
    • 2013
  • Tatsuoka and Shibuya(1991)는 하나의 식으로 연약 점성토에서 연암에 이르는 광범위한 지반재료에 대해 적용 가능하며, 넓은 범위의 변형률 수준($10^{-6}{\sim}10^{-2}$)에 대해 적용할 수 있는 새로운 제안식을 발표하였다. 본 연구는 세계 각국의 주요 연구기관에서 사용되고 있는 7종류의 연구용 표준사 공시체 및 2종류의 유리 구슬(Glass beads) 공시체를 이용하여 평면변형률압축시험을 실시하고, 새롭게 제안된 식에 적용하여 각각의 파라메타의 경향성에 대해 연구하였다. 그 결과 구속압이 클수록 $C_1(X={\infty})$ 값이 크게 되지만, $C_2(X={\infty})$ 값은 거의 변화하지 않았다. ${\delta}$에 대한 $C_1(X={\infty})$ 값의 변화는 모래의 종류에 관계없이 ${\delta}$가 클수록 크게 되는 경향이 있지만, $C_2(X={\infty})$, $C_2$(X=Xe) 값은 ${\delta}$가 변화해도 그다지 변화하지 않았다. 한편, ${\alpha}$, ${\beta}$값은 ${\delta}$가 감소함에 따라 약간 감소하는 경향이 있었다.

RH-DMA를 적용한 PET 필름의 장기 점탄성 성능 예측 (Prediction of Long-term Viscoelastic Performance of PET Film Using RH-DMA)

  • 최순호;윤성호
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.382-387
    • /
    • 2019
  • 상대습도와 온도가 PET 필름의 점탄성 특성에 미치는 영향을 조사하기 위해 RH-DMA를 이용하여 single frequency strain mode 시험, stress relaxation mode 시험, creep 시험을 수행하였다. 상대습도는 10%, 30%, 50%, 70%, 90%를 적용하고 온도는 single frequency strain mode 시험의 경우 30~95℃, stress relaxation mode 시험의 경우 30℃ 와 70℃, creep 시험의 경우 5~95℃를 고려하였다. 연구결과에 따르면 상대습도가 높아지면 저장탄성계수와 손실탄성계수는 낮아지며 손실탄성계수의 최대값은 상대습도의 변화에 큰 영향을 받지 않고 거의 일정해진다. 이완탄성계수는 초기에 급격히 감소하다가 일정한 값을 가지며 높은 온도에서는 상대습도의 변화에 민감해진다. 변형률 회복는 초기에 급격히 증가하며 온도가 높아지면 이완 탄성계수와 마찬가지로 상대습도에 민감하게 변한다. 크리프 컴플라이언스의 증가 정도는 온도가 높아지면 커지며 유리전이온도보다 온도가 높아지면 증가 정도는 더욱 커진다. 시간-온도 중첩법을 통해 구해지는 마스터 선도를 이용하면 상대습도와 온도 등의 운용 조건에서의 장기 성능을 예측할 수 있는 정보를 얻을 수 있다.

Topological phase transition according to internal strain in few layer Bi2Se3 thin film grown via a self-organized ordering process

  • 김태현;박한범;정광식;채재민;황수빈;조만호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.272.1-272.1
    • /
    • 2016
  • In a three-dimensional topological insulator Bi2Se3, a stress control for band gap manipulation was predicted but no systematic investigation has been performed yet due to the requirement of large external stress. We report herein on the strain-dependent results for Bi2Se3 films of various thicknesses that are grown via a self-organized ordering process. Using small angle X-ray scattering and Raman spectroscopy, the changes of d-spacings in the crystal structure and phonon vibration shifts resulted from stress are clearly observed when the film thickness is below ten quintuple layers. From the UV photoemission/inverse photoemission spectroscopy (UPS/IPES) results and ab initio calculations, significant changes of the Fermi level and band gap were observed. The deformed band structure also exhibits a Van Hove singularity at specific energies in the UV absorption experiment and ab initio calculations. Our results, including the synthesis of a strained ultrathin topological insulator, suggest a new direction for electronic and spintronic applications for the future.

  • PDF