• Title/Summary/Keyword: Strain changes

Search Result 1,038, Processing Time 0.029 seconds

Identification and Characteristics of a Purple, Non-Sulfur Bacterium, Rhodobacter sp. EGH-24 from Korea Coast (한국 해안으로부터 Purple, Non-Sulfur Photosynthetic Bacterium, Rhodobacter sp. EGH-24의 분리 및 특성)

  • 차미선;김기한;조순자;이나은;이정은;이재동;박재림;이상준
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1293-1301
    • /
    • 2003
  • A species of facultative photo-organotrophic, purple, non-sulfur bacterium was isolated from the 47 point at west and south coast of Korea in September 2001. Separated 13 samples of changes with red color under 28-32$^{\circ}C$, 3000 lux, anaerobe conditions for 7 days cultivated in basal medium. For pure isolation from 13 samples, we used agar-shake tube method (0.4 % agar) and separated 5 strains through 13-repetition test. EGH-24 and EGH-30 was identified as the same strain through the RAPD(Random Amplified Polymorphic DNA)-PCR of strain EGH-9, EGH-13, EGH-23, EGH-24, EGH-30. Four isolates cultivated in synthesis wastewater for wastewater biodegradation test. EGH-24 was selected with efficient wastwater treating strain. Based on the results obtained from morphology, nutrient requirements, major bacteriochlorophyll content, 16S-rDNA phylogenetic analysis, EGH-24 strain may be identified as a new strain of the genus Rhodobacter and named Rhodobacter sp. EGH-24.

Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density (전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측)

  • Kim, Jae-Hoon;Kim, Duck-Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

Texture and Plastic Strain Ratio Changes with the Number of Passes of Asymmetric Rolling in AA1050 Al Alloy Sheet (비대칭 압연 패스 회수에 따른 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Nam, Su-Kwon;Jeong, Hae-Bong;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.502-507
    • /
    • 2010
  • The physical and mechanical properties and formability of sheet metals depend on preferred crystallographic orientations (texture). In this research work, the texture development and formability (plastic strain ratios) of AA1050 Al alloy sheets after 3 and 10 passes of asymmetric rolling and subsequent heat treatment were investigated. The plastic strain ratios of 10 passes asymmetrically rolled and subsequent heat treated samples are 1.3 times higher than those of the initial AA1050 Al alloy sheets. The ${\Delta}r$ of 10 passes of asymmetrically rolled and subsequent heat treated samples is 1/30 times lower than those of the initial AA1050 Al alloy sheets. The plastic strain ratios of 10 passes of asymmetrically rolled and subsequent heat treated Al sheets are higher than those of 3 passes ones. These results could be attributed to the formation of $\gamma$-fiber, ND//<111>, and the other texture components by means of asymmetric rolling in Al sheets.

Study on Fracture Life Under Mutual Interaction of Creep and Fatigue (크리프-피로상호작용하의 파단수명에 관한 연구)

  • Cho, Yong-Ee;Kim, Hei-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-106
    • /
    • 1993
  • This is the study on fracture life under the interaction of creep and fatigue. It is difficult to explain the interaction of the creep and fatigue with indication of frequency but the dependency of the time should be considered. The formulation of material varieties causing by interaction of creep and fatigue is required in the accumulative damage method. The strain range partition method requires some of modification corresponding to the changes in temperature and load. All of other method also comprehended with above mentioned problems. Generally, in this field, the variety of stress-strain and suitable parameter is required and connective study between the macro and micro results seems to be insufficient. The linear damage rule is acquiring the support generally but it requires modification in the hgigh temperature instruments. The variety of stress effecting on crack and variety of stress on the metallurgical side are considered to be problems in the future days.

  • PDF

Effects of Pb Aaddition on Microstructur and Texture in High Temperature Plane Strain Compression of Magnesium Alloys (마그네슘 합금의 고온 평면변형 압축에서 Pb 첨가에 따른 미세조직 및 집합조직 변화)

  • Yebeen Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • As global warming accelerates, the transportation industry is increasing the use of lightweight materials with the goal of reducing carbon emissions. Magnesium is a suitable material, but its poor formability limits its use, so research is needed to improve it. Rare-earth elements are known to effectively control texture development, but their high cost limits commercial. In this study, changes in microstructure and texture were investigated by adding Pb, which is expected to have a similar effect as rare-earth elements. The material used is Mg-15wt%Pb alloy. Initial specimens were obtained by rolling at 773 K to a rolling reduction of 25% and heat treatment. Afterwards, plane strain compression was performed at 723 K with a strain rate of 5×10-2s-1 and a strain of -0.4 to -1.0. As a result, recrystallized grains were formed within the microstructure, and the main component of the texture changed from (0,0) to (30,26). The maximum axial density was initially 10.01, but decreased to 4.23 after compression.

Mode I crack propagation analisys using strain energy minimization and shape sensitivity

  • Beatriz Ferreira Souza;Gilberto Gomes
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.99-110
    • /
    • 2024
  • The crack propagation path can be considered as a boundary problem in which the crack advances towards the interior of the domain. Consequently, this poses an optimization problem wherein the local crack-growth direction angle can be treated as a design variable. The advantage of this approach is that the continuous minimization of strain energy naturally leads to the mode I propagation path. Furthermore, this procedure does not rely on the precise characterization of the stress field at the crack tip and is independent of stress intensity factors. This paper proposes an algorithm based on internal point exploration as well as shape sensitivity optimization and strain energy minimization to determine the crack propagation direction. To implement this methodology, the algorithm utilizes a modeling GUI associated with an academic analysis program based on the Dual Boundary Elements Method and determines the propagation path by exploiting the elastic strain energy at points in the domain that are candidates to be included in the boundary. The sensitivity of the optimal solution is also assessed in the vicinity of the optimum point, ensuring the stability and robustness of the solution. The results obtained demonstrate that the proposed methodology accurately predicts the crack propagation direction in Mode I opening for a single crack (lateral and central). Furthermore, robust optimal solutions were achieved in all cases, indicating that the optimal solution was not highly sensitive to changes in the design variable in the vicinity of the optimal point.

Changes of characterization of Salmonella Typhimurium isolate following sequential exposures to porcine neutrophil (Salmonella Typhimurium의 돼지 호중구내 연속노출에 따른 특성변화)

  • Lee, Hee-Soo;Kim, Aeran;Youn, Min;Lee, Ji-Youn;Lim, Suk-Kyung;Kang, Ho-Young;Yoo, Han Sang;Park, Jung-Won;Wee, Sung-Hwan;Jung, Suk-Chan
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • To develop a live vaccine candidate using an attenuated strain of Salmonella Typhimurium (ST), biochemical properties, plasmid profile, PFGE patterns and pathogenic analysis of the ST isolate were carried out after sequential passage of the ST isolate in porcine neutrophils. By the passage, the ability of the neutrophil-adapted isolate to utilize d-xylose was lost, while the ability of the strain to ferment trehalose was delayed after 2 or more days of the culture. Also, changes including deletion of the gene fragments were observed in PFGE analysis of the neutrophil-adapted isolates. Two plasmids, 105kb and 50kb, were cured in the strain passaged over 15 times in porcine neutrophils. The 50% of lethal dose ($LD_{50}$) of the parent strain was changed from $1{\times}10^5\;LD_{50}$ to $6{\times}10^6\;LD_{50}$ by the passage in intraperitoneal injection of the strains into mice. These results suggested that bacterial genotypic and phenotypic responses might be globally altered depending on the inside environment of neutrophils.

Comparisons of Electrical Conductivity between Polyester/Polyurethane and Nylon/Polyurethane Woven or Knitted Fabrics with Silver Paste Patterns in Elongation-Strain test (폴리에스터/폴리우레탄 및 나일론/폴리우레탄에 은 문양을 입힌 편직물의 신장-변형 시 전기 전도도 비교)

  • Kim, Hyejin;Yun, Changsang;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2019
  • The objective of this study was to investigate electrical conductivity of fabrics from polyester (PET) and Nylon (N) containing polyurethane (PU), with silver paste patterns screen-stenciled in three directions. The PET/PU and N/PU fabrics knitted or woven were uniaxially strain-recovered up to 22.5% in three times when each change in electrical resistance was simultaneously measured. This study established four variables that complexly affected electrical conductivity of these specimens; fabric structures, components, cover factors, and the percolation of silver particles. The woven or knitted fabric structures did not distinctively cause the changes in electrical resistance, however, the woven fabrics with the diagonal patterns showed their relatively high electrical resistance. The PET/PU fabrics with increasing the PET proportion generally presented the opposite propensity to its electrical conductivity. The changes in electric resistance of the PET/PU 85/15 2/1 twill and double plain fabrics instantaneously responded to the rate of elongation. The PET/PU group exhibited a reverse correlation between its cover factor and electrical resistivity. The highest electrical conductivity of the PET/PU 95/5 interlock fabric, with very few fluctuations, was attributed to the deep percolation of the silver particles that bridged the gaps between one loop and another. On the other hand, the occurrence of the silver cracks along with the elongated direction led to the immeasurably high change in electrical resistance as the strain increased.

Damage of Overlaid Concrete Structures Subjected to Humidity Changes in the Atmosphere (습도 변화에 따른 콘크리트 덧씌우기 보수체의 손상분석)

  • 윤우현
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.766-773
    • /
    • 2002
  • The failure phenomenon of overlaid concrete structures, such as surface crack, and peel-off failure, shear bond failure in the end contact zone, was investigated due to humidity changes. To investigate this failure phenomenon, the surface tensile stress, and the shear stress, the vertical tensile stress in the contact zone were analysed using the non-linear stress-strain relationship of material such as strain-hardening- and strain-softening diagrams. Overlay thickness and overlay material were the main variables in the analyses. It is assumed that the initial surface humidity of overlaid concrete structures was 100% r.H. With a atmospheric humidity of 55% r.H. and two load cases for drying(LCI), curing and drying(LC2), the stress states of overlaid concrete structures were calculated. The result shows that only fictitious cracks occurred in the overlay surface of CM2O, ECM25, and no shear bond failure occurred in the contact zone without CM2O. The peel-off failure was proved to be the main cause of the damage in the overlaid concrete structures. Only for overlay thickness of 1cm occurred no peel-off failure in the case of drying after a long-term public use(LC1). In the case of curing and drying during overlay work(LC2) occurred the peel-off failure within 1.5days for all the overlaid concrete structures.

The Effects of Volume Ratio and Shape on the Formation of Adiabatic Shear Band in WHA (텅스텐 중합금의 부피분율, 입자형상에 따른 단열전단밴드 형성 연구)

  • 이승우;송흥섭;문갑태
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • The formation of adiabatic shearband in tungsten heavy alloys(WHA) was studied in this investigation. Five prismatic specimens were loaded by high velocity impacts and treated as plane strain problems. To find out the effect of particle's volume ratio, specimens containing 81%, 93% and 97% volume percents of tungsten particles were used. Also the effects of particle's geometry and size on the formation of shearband were studied for 81% volume percent alloys by small size particle model, large size particle model and undulated particle models, and the results were discussed.be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, or incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.