• 제목/요약/키워드: Strain calculation

검색결과 350건 처리시간 0.022초

점성토의 유한요소해석에서 전단파라미터에 따른 성토 및 굴착 거동 (Embankment and Excavation Behaviour with Shear Parameters of Soft Clayey Soil in FEM)

  • 김병일;최찬용;홍강한;한상재
    • 한국지반공학회논문집
    • /
    • 제34권2호
    • /
    • pp.5-17
    • /
    • 2018
  • 본 연구에서는 연약지반에서의 재하/제하에 대한 안정해석과 응력-변형 해석시 전단 파라미터(UU; Unconsolidated Undrained, CU; Consolidated Undrained(전응력), ${\bar{CU}}$ ; Consolidated Undrained(유효응력))에 따른 초기 지중응력, 강도, 응력-변형 특성을 평가하였다. 시공단계를 고려한 유한요소 해석시 입력하는 전단 파라미터에 따라 초기 지중응력과 이후 해석 결과가 달라질 수 있음을 확인하였다. 특히, Mohr-Coulomb 모델의 입력 파라미터인 내부마찰각(Phi)을 0으로 입력하여 초기 지중응력과 이후 응력-변형 거동을 해석할 경우 잘못된 결과를 도출 할 수 있다는 것을 확인하였다. 전응력 파라미터, CU를 초기 및 전단시 일괄 적용한 해석과 유효응력 파라미터, CU에서 전응력 파라미터, CU로 변경한 해석 결과가 큰 차이를 보이지 않았다. 따라서, 연약지반에 대한 수치해석시 CU 파라미터를 적용하여도 초기 지중응력과 이후 응력-변형 거동에 큰 차이 없이 예측할 수 있음을 알 수 있었다. 또한, 실무에서 적용하기 편한 방법으로 실제 흙의 거동과 동일한 강도를 갖는 Mohr-Coulomb 모델의 전단 파라미터를 산정하는 방법을 제안하였다.

일반긴장이론에 근거한 청소년 지위비행에 관한 연구 - 긴장요인으로서의 자녀학대경험을 중심으로 - (A Study of Adolescents' Status Offenses Based on General Strain Theory - Experiencing Child Abuse as a Strain Factor -)

  • 김재엽;송아영;박경나
    • 사회복지연구
    • /
    • 제37호
    • /
    • pp.295-318
    • /
    • 2008
  • 본 연구의 목적은 일반긴장이론에 근거한 청소년 지위비행 설명 모형을 검증하는 데 있다. 설문은 2007년 10월 22일부터 2007년 11월 9일까지 서울 및 경기 지역의 중고등학교 남녀청소년을 대상으로 이루어졌다. 본 연구에서는 최종 수거된 1167사례 중 응답내용이 부실한 27사례를 제외하고 총 1140사례를 이용하여 분석하였다. 우울을 매개로한 자녀학대경험과 청소년 지위비행 모형을 구조방정식을 이용하여 분석한 결과 적합도지수가 각각 .986(TLI), .994(CFI), 그리고 .032(RMSEA)으로 나타나 높은 적합도지수를 보여주었다. Aroian test를 통해 우울의 매개효과를 검증한 결과 유의미한 매개효과를 지니고 있음이 검증되었다(p<.001). 그러나 본 연구에서 주요 조건변수로 제시한 청소년의 자기통제력은 우울이 지위비행으로 이르는 경로에 유의미한 영향을 주지 않는 것으로 나타나 조건효과가 검증되지 않았다.

Experimental and finite element studies of special-shape arch bridge for self-balance

  • Lu, Pengzhen;Zhao, Renda;Zhang, Junping
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.37-52
    • /
    • 2010
  • Special-shape arch bridge for self-balance (SBSSAB) in Zhongshan City is a kind of new fashioned spatial combined arch bridge composed of inclined steel arch ribs, curved steel box girder and inclined suspenders, and the mechanical behavior of the SBSSAB is particularly complicated. The SBSSAB is aesthetic in appearance, and design of the SBSSAB is artful and particular. In order to roundly investigate the mechanical behavior of the SBSSAB, 3-D finite element models for spatial member and shell were established to analyze the mechanical properties of the SBSSAB using ANSYS. Finite element analyses were conducted under several main loading cases, moreover deformation and strain values for control section of the SBSSAB under several main loading cases were proposed. To ensure the safety and rationality for optimal design of the SBSSAB and also to verify the reliability of its design and calculation theories, the 1/10 scale model tests were carried out. The measured results include the load checking calculation, lane loading and crowd load, and dead load. A good agreement is achieved between the experimental and analytical results. Both experimental and analytical results have shown that the SBSSAB is in the elastic state under the planned test loads, which indicates that the SBSSAB has an adequate load-capacity. The calibrated finite-element model that reflects the as-built conditions can be used as a baseline for health monitoring and future maintenance of the SBSSAB.

An Improved Calculation Model for Analysis of [111] InGaAs/GaAs Strained Piezoelectric Superlattices

  • Kim, Byoung-Whi;Yoo, Jae-Hoon;Kim, Soo-Hyung
    • ETRI Journal
    • /
    • 제21권4호
    • /
    • pp.65-82
    • /
    • 1999
  • We present a calculation model for an improved quantitative theoretical analysis of electronic and optical properties of strained-piezoelectric[111] InGaAs/GaAs superlattices (SLs). The model includes a full band-coupling between the four important energy bands: conduction, heavy, light, and spin split-off valence bands. The interactions between these and higher lying bands are treated by the k ${\cdot}$ p perturbation method. The model takes into account the differences in the band and strain parameters of constituent materials of the heterostructures by transforming it into an SL potential in the larger band-gap material region. It self-consistently solves an $8{\times}8$ effective-mass $Schr{\ddot{o}}dinger$ equation and the Hartree and exchange-correlation potential equations through the variational procedure proposed recently by the present first author and applied to calculate optical matrix elements and spontaneous emission rates. The model can be used to further elucidate the recent theoretical results and experimental observations of interesting properties of this type of quantum well and SL structures, including screening of piezoelectric field and its resultant optical nonlinearities for use in optoelectronic devices.

  • PDF

회전하는 타이어의 변형에너지 손실에 의한 온도분포 해석 (Analysis of Temperature Distribution in a Rolling Tire due to Strain Energy Dissipation)

  • 박현철;윤성기;송태석;김남전
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.746-755
    • /
    • 1997
  • This paper addresses the systematic procedure using sequential approach for the analysis of the coupled thermo-mechanical behavior of a steady rolling tire. Not only the knowledge of mechanical stresses but also of the temperature loading in a rolling tire are very important because material damage and material properties are significantly affected by the temperature. In general, the thermo-mechanical behavior of a pneumatic tire is highly complex transient phenomenon that requires the solution of a dynamic nonlinear coupled themoviscoelasticity problem with heat source resulting from internal dissipation and friction. In this paper, a sequential approach, with effective calculation schemes, to modeling this system is presented in order to predict the temperature distribution with reasonable sccuracies in a steady state rolling tire. This approach has the three major analysis modules-deformation, dissipation, and thermal modules. In the dissipation module, an analytic method for the calculation of the heat source in a rolling tire is established using viscoelastic theory. For the verification of the calculated temperature profiles and rolling resistance at different velocities, they were compared with the measured ones.

An Investigation of the deformation of underground excavations in slat and potash mines

  • 권상기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1998년도 터널.암반역학위원회 박사학위 논문집
    • /
    • pp.83-114
    • /
    • 1998
  • The most widely accepted method for understanding the deformation mechanism of rock is from the use of computer simulation. However, if the changes in rock properties after excavation are significant this will prevent the computer simulation kent predicting the deformation with acceptable accuracy. If the deformations are, however, carefully measured in situ, the resulting data can be more useful far predicting the deformational behavior of underground openings, since the effect of the parameters which influence the deformational behavior are included in the measurement. In this study, extensive data analyses were carried out using the deformation measurements from the Waste Isolation Pilot Plant (WIPP), which is a permanent nuclear waste repository The results from computer simulations were compared with field measurements to evaluate the assumptions used in the computer simulations, For better description of the deformational behavior around underground excavations, several techniques were developed, namely: (a) the calculation of the zero strain boundary; (b) the evaluation of the influence of adjacent excavations on the deformational behavior of pre-excavated openings; (c) the description of the deformational behavior using in situ measurements; (d) the calculation of the shear stress distribution; and (e) the application of a Neural Network for the prediction of opening deformation.

  • PDF

전달매트릭스법에 의한 다점지지축계의 연성자유횡진동계산에 관한 연구 (Calculation of the coupled free, transverse vibrations of the multi-supported shaft system by transfer matrix method)

  • 안시영;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.49-63
    • /
    • 1983
  • Coupled transverse shaft vibrations have become the target of great concern in high powered ships such as container ships. Due to increasing ship's dimensions and high propulsive power, resonance frequencies of the propeller shaft system tend to decrease and can appear in some cases within the operating speed range of engine. In this connection, the coupled free transverse vibrations of shaft system in two planes are theoretically investigated. This shaft system carries a number of discs and is flexibly supported by a number of bearing stiffness are considered for the calculation. Transfer matrix method is applied to calculate the shaft responses in both planes. A digital computer program is developed to calculate the shaft responses of the coupled transverse vibrations in two planes. An experimental model shaft system is made. It is composed of a disc, shafts, ball bearings thrust bearings and flexible bearing supports. The shaft system is excited by an electrical magnet, and shaft vibration responses in two planes are measured with the strain gage system. From these measurements, the natural frequencies of the shaft system in both planes are found out. The developed program is also used to calculate the shaft vibration responses of experimental model shaft system. From the results of these calculations, the natural frequencies of shaft system in two planes are derived. Theoretical predictions of model shaft natural frequencies show good agreements with its esperimental measurements.

  • PDF

Experimental and analytical study on continuous GFRP-concrete decks with steel bars

  • Tong, Zhaojie;Chen, Yiyan;Huang, Qiao;Song, Xiaodong;Luo, Bingqing;Xu, Xiang
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.737-749
    • /
    • 2020
  • A hybrid bridge deck is proposed, which includes steel bars, concrete and glass-fiber-reinforced-polymer (GFRP) plates with channel sections. The steel bar in the negative moment region can increase the flexural stiffness, improve the ductility, and reduce the GFRP ratio. Three continuous decks with different steel bar ratios and a simply supported deck were fabricated and tested to study the mechanical performance. The failure mode, deflection, strain distribution, cracks and support reaction were tested and discussed. The steel bar improves the mechanical performance of continuous decks, and a theoretical method is proposed to predict the deformation and the shear capacity. The experimental results show that all specimens failed with shear failure in the positive moment region. The increase of steel bar ratio in the negative moment region can achieve an enhancement in the flexural stiffness and reduce the deflection without increasing GFRP. Moreover, the continuous deck can achieve a yield load, and the negative moment can be carried by GFRP plates after the steel bar yields. Finally, a nonlinear analytical method for the deflection calculation was proposed and verified, with considering the moment redistribution, non-cracked sections and nonlinearity of material. In addition, a simplified calculation method was proposed to predict the shear capacity of GFRP-concrete decks.

파이프 원주방향 용접부의 잔류응력 연구 (A study on the residual stresses in circumferential welds of the pipes)

  • 남궁재관;홍재학
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.693-702
    • /
    • 1991
  • The existence of residual stress in the circumferential butt welded pipes is one of the most important problems concerning stress corrosion cracking in service. In this paper, the residual stress distributions in three kinds of circumferential butt welded pipes were measured by the hole drilling strain gage method and calculation using finite element method is performed and its results are compared with the experiments. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed rom compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self restraint bending force in the pipe welding.

크리프에 의한 철근콘크리트 보의 처짐 예측 (Prediction of Deflection of Reinforced Concrete Beams due to Creep)

  • 이상순;김용빈;김진근;이수곤
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.253-260
    • /
    • 1998
  • 본 논문에서는 장기지속하중을 받는 철근콘크리트 보의 처짐을 계산하는 방법을 제안하였다. 균열단면에 대하여 적합조건 및 평형조건을 적용하여 크리프에 의한 중립축의 변화를 계산하는 효율적인 알고리즘을 제시하였으며, 이 값을 이용하여 임의의 시간에서의 휨강성을 유도하였다. 그리고 유사한 방법으로 비균열단면에서의 휨강성을 계산하고 균열단면과 비균열단면에서 각각 계산된 휨강성을 사용하여 ACI규준식의 유효단면 2차모멘트를 계산하는 것과 유사한 방법으로 휨강성을 계산하여 지속하중을 받는 철근콘크리트 보의 처짐을 예측하는 방법을 제시하였다. 제안된 방법과 기존의 실험결과를 비교하여 볼 때, 제안된 방법이 장기지속하중을 받는 철근콘크리트보의 처짐을 잘 예측하였다.