• Title/Summary/Keyword: Strain Specificity

Search Result 160, Processing Time 0.027 seconds

Prebiotic Potential of Xylooligosaccharides Derived from Corn Cobs and Their In Vitro Antioxidant Activity When Combined with Lactobacillus

  • Yu, Xiuhua;Yin, Jianyuan;Li, Lin;Luan, Chang;Zhang, Jian;Zhao, Chunfang;Li, Shengyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1084-1092
    • /
    • 2015
  • In the present work, the in vitro prebiotic activity of xylooligosaccharides (XOS) derived from corn cobs combined with Lactobacillus plantarum, a probiotic microorganism, was determined. These probiotics exhibited different growth characteristics depending on strain specificity. L. plantarum S2 cells were denser and their growth rates were higher when cultured on XOS. Acetate was found to be the major short-chain fatty acid produced as the end-product of fermentation, and its amount varied from 1.50 to 1.78 mg/ml. The antimicrobial activity of XOS combined with L. plantarum S2 was determined against gastrointestinal pathogens. The results showed that XOS proved to be an effective substrate, enhancing antimicrobial activity for L. plantarum S2. In vivo evaluation of the influence of XOS and L. plantarum S2, used both alone and together, on the intestinal microbiota in a mouse model showed that XOS combined with L. plantarum S2 could increase the viable lactobacilli and bifidobacteria in mice feces and decrease the viable Enterococcus, Enterobacter, and Clostridia spp. Furthermore, in the in vitro antioxidant assay, XOS combined with L. plantarum S2 possessed significant 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis, and superoxide anion radical-scavenging activities, and the combinations showed better antioxidant activity than either XOS or L. plantarum S2 alone.

Gene Cloning, Expression, and Characterization of a New Carboxylesterase from Serratia sp. SES-01: Comparison with Escherichia coli BioHe Enzyme

  • Kwon, Min-A;Kim, Hyun-Suk;Oh, Joon-Young;Song, Bong-Keun;Song, Jae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.147-154
    • /
    • 2009
  • The carboxylesterase-encoding gene(bioHs) of a newly isolated strain, Serratia sp. SES-01, was cloned from the genomic DNA library by detecting formation of transparent halo around the colony on LB-tributyrin agar plates. The amino acid sequence of BioHs was highly similar to the members of the BioH enzyme family involved in the biotin biosynthetic pathway; it showed the highest similarity(91%) with that of Serratia proteamaculans. To compare BioHs with other BioH enzymes, the relatively well-known bioHe gene of E. coli was cloned with PCR. After we achieved high-level expression of soluble BioHs and BioHe through the exploration of different culture conditions, the purified BioHs and BioHe enzymes were characterized in terms of specificity, activity, and stability. BioHe was generally more robust to a change in temperature and pH and an addition of organic solvents than BioHs. The two enzymes exhibited a strong preference for carboxylesterase rather than for thioesterase and were optimal at relatively low temperatures($20-40^{\circ}C$) and alkaline pHs(7.5-9.0). The results in this study strongly suggested that both the BioHs and BioHe enzymes would be potential candidates for use as a carboxylesterase in many industrial applications.

Reevaluation of the Change of Leuconostoc Species and Lactobacillus plantarum by PCR During Kimchi Fermentation

  • Choi, Jae-Yeon;Kim, Min-Kyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.166-171
    • /
    • 2002
  • The genus Leuconostoc is generally recognized as a favorable microorganism associated with a good taste of Kimchi and Lactobacillus plantarum is responsible for the overripening and acidification of Kimchi. A rapid and reliable PCR-based method to monitor the change of these lactic acid bacterial populations during Kimchi fermentation was attempted. A Leuconostoc-specific primer set was chosen from the conserved sequences of 16S rRNA genes among Leuconostoc species. The Lb. plantarum-specific primer set was the internal segments of a Lb. plantarum-specific probe which was isolated after randomly amplified polymorphic DNA (RAPD) analysis and tested for identification. The specificity of this protocol was examined in DNA samples isolated from a single strain. In agarose gel, as little as 10 pg of template DNA could be used to visualize the PCR products, and quantitative determination was possible at the levels of 10 pg to 100 ng template DNA. For the semi-quantitative determination of microbial changes during Kimchi fermentation, total DNAs from the 2 h-cultured microflora of Kimchi were extracted for 16 days and equal amounts of DNA templates were used for PCR. The intensities of DNA bands obtained from PCR using Leuconostoc-specific and Lb. plantarum-specific primer sets marked a dramatic contrast at the 1 ng and 100 ng template DNA levels during Kimchi fermentation, respectively. As the fermentation proceeded, the intensity of the band for Leuconostoc species increased sharply until the 5th day and the levels was maintained until the 11 th day. The sharp increase for Lb. plantarum occurred after 11 days with the decrease of Leuconostoc species. The results of this study indicate that Leuconostoc species were the major microorganisms at the beginning of Kimchi fermentation and reach their highest population during the optimum ripening period of Kimchi.

Detection of antibodies in swine serum to Aujeszky's disease virus using agar-gel immunodiffusion test (Agar-gel immunodiffusion test를 이용한 돼지 혈청중 Aujeszky's disease virus 항체 검출에 관한 연구)

  • Cho, Hyo-gueon;Jun, Moo-hyung
    • Korean Journal of Veterinary Research
    • /
    • v.30 no.3
    • /
    • pp.297-307
    • /
    • 1990
  • To establish an agar-gel immunodiffusion (AGID) test for detection of antibodies to Aujeszky's disease virus(ADV) in swine, the precipitating antigens were prepared by four procedures using the Aujeszky's disease virus, NYJ-1-87 strain isolated from the affected piglets in Korea. The optimal condition for AGID test and the properties of the antigens were investigated. To determine the optimal concentration of antigens, four antigens were experimentally prepared by concentrating the viral fluids by 1/30 to 1/200. It was proved that the antigen precipitated with ammonium sulfate at concentration of 1/100 was the most efficient to detect ADV antibodies by AGID test. When the relationship between the concentration of the antigens and the size of precipitating in radial immunodiffusion test was investigated, a high correlation coefficiency at r=0.95 (y=0.23x+23.4) was estimated, In study on the effects of various buffered salt solutions and agars on the sensitivity of AGID test by using the experimental ADV antigens, it was found that 0.05M tris buffer without sodium chloride at pH 7.2 induced the most distinctive precipitating lines, and that there was no significant differences in the sensitivity between the agarose and Noble's special agar. When the efficiency of AGID test was compared with serum neutralization(SN) test, the sensitivity of AGID test was 100% in SN titer over 1 : 16, 91.7% in SN titer of 1 : 8 and 57.1% in SN titer of 1 : 4. The specificity of AGID test compared with the sera with SN titer under 1 : 2 was 98.4%. Protein analysis of the antigens by SDS-PAGE indicated that antigen I and antigen III showed a specific band of polypeptides with molecular weight of 116 K in comparison with the control antigen. Antigen IV, treated with tween-80 and ammonium sulfate, revealed specific polypeptides bands at the molecular weights 45K, 98K and 150 K.

  • PDF

Detection of Mycobacterium leprae by Nested PCR Targeting M. leprae-Specific Repetitive Element (RLEP) Sequence

  • Wang, Hye-Young;Kim, Yeun;Bang, Hye-Eun;Kim, Hyun-Chul;Cho, Sang-Nae;Lee, Hye-Young
    • Biomedical Science Letters
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • The aim of this work was to validate a rapid and an accurate method for detecting Mycobacterium leprae in clinical specimens using nested PCR targeting M. leprae-specific repetitive element (RLEP) sequence. The primers were derived from the RLEP sequence which yield a 272 bp outer product and a 230 bp inner product. The specificity and the sensitivity of the nested PCR were compared with those of single PCR for detecting M. leprae using DNAs isolated from reference strain and various species of Mycobacterium. The results showed that the sensitivity of the nested PCR was about 100 to 1,000 times higher than that of the single PCR and also showed that both the single and the nested PCR were highly specific to M. leprae. Subsequently, the usefulness of the single and nested PCR was evaluated with clinical samples isolated from leprosy patients. The number of positive detections by the single and the nested PCR with a total of 20 specimens from leprosy patients were 9 (45%) and 20 (100%), respectively. The results clearly showed that nested PCR has highest sensitivity in detecting M. leprae from clinical specimens. Therefore, nested primers targeting RLEP sequence developed in this study seems to be useful to detect the presence of M. leprae.

  • PDF

Factors Affecting the Adherence of Bifidobacteria to Caco-2 Cell (Bifidobacteria의 Caco-2 Cell 정착성에 미치는 영향 인자)

  • 김응률;정후길;전석락;유제현
    • Food Science of Animal Resources
    • /
    • v.21 no.2
    • /
    • pp.133-141
    • /
    • 2001
  • Adherence of probiotic bacteria to intestinal epithelium is found to be the most principal characteristics among the various physiological functionality. This study was conducted to investigate the effect of bifidobacterial growth properties and condition on the Caco-2 cell adherence and to construct a basic data on adherence-related research. Among 20 strains of bifidobacteris tested, when measured by cell surface hydrophobicity(CSH) and cell agglutination(CA), Bifidobacterium bifidum ATCC29521, Bif. adolescentis K8, and Bif. infantis K9 were selected. Using these strains, variations of Caso-2 cell adherence depending upon experimental condition were analyzed. The results obtained are as follows : Even though Bif. bifidum ATCC29521, Bif. adolescentis K8, and Bif. infantis K9 reached more 85% cell surface hydrophobicity there was no significant difference in cell agglutination, when reached 31.54$\pm$0.54mg/ml. By direct count method for adherence, viable cell count of M3, K1, K2, K8, K9 and K10 reached more 100 counts per 100 Caco-2 cells. When Bif. bifidum ATCC29521, Bif. adolescentistis K8, and Bif. infantis K9 were used to compare the adherence depending upon viable cell counts, reaction time, and growth phase, the more viable cell count, and the more adhered cell counts, the less adherence percentage. In addition, there was no difference in adherence percentage of bifidobacteria when bifidobacteria was incubated from 1 to 8 hrs after Caco-2 cells already formed monolayer. Considering of the effect of growth phase of bifidobacteria on adherence variation, all strains showed the highest adherence during the early stage of stationary phase. In conclusion, adherence of bifidobacteria was affected by strain specificity, viable cell count, and growth activity.

  • PDF

Cloning, Expression, and Characterization of a Cold-Adapted Lipase Gene from an Antarctic Deep-Sea Psychrotrophic Bacterium, Psychrobacter sp. 7195

  • Zhang, Jinwei;Lin, Shu;Zeng, Runying
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.604-610
    • /
    • 2007
  • A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at $30^{\circ}C$, and was unstable at temperatures higher than $30^{\circ}C$, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24h incubation at $4^{\circ}C$. The addition of $Ca^{2+}\;and\;Mg^{2+}$ enhanced the enzyme activity of LipA1, whereas the $Cd^{2+},\;Zn^{2+},\;CO^{2+},\;Fe^{3+},\;Hg^{2+},\;Fe^{2+},\;Rb^{2+}$, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate $(C_{14}\;acyl\; groups)$.

Isolation, Physiological Characterization of Bacteriophages from Enhanced Biological Phosphorus Removal Activated Sludge and Their Putative Role

  • Lee, Sang-Hyon;Satoh, Hiroyasu;Katayama, Hiroyuki;Mino, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.730-736
    • /
    • 2004
  • This study aims at characterizing the bacteriophages isolated from activated sludge performing enhanced biological phosphorous removal (EBPR) to understand the interactions between the phage-host system and bacterial community. Sixteen bacterial isolates (E1-E16) were isolated as host bacterial strains from EBPR activated sludge for phage isolation. Forty bacteriophages based on their plaque sizes (2 plaques on E4, 4 on E8, 11 on E10, 5 on E14, 18 on E16) were obtained from filtered supernatant of the EBPR activated sludge. Each bacteriophage did not make any plaque on bacterial strains tested in this study except on its own host bacterial strain, respectively, indicating that the bacteriophages are with narrow host specificity. However, fourteen of the forty bacteriophages obtained in this study lost their virulent ability even on their own host bacteria. All of the lytic phages showed similar one-step growth patterns and had long latent period (about 9 hours) to reproduce their phage particles in their host bacterial cells. On the other hand, their probable burst sizes (6 to 48 per host cell) were large enough to actively lyse their host bacterial cells. Therefore, it could be implied that bacteriophages are also important members of the microbial community in EBPR activated sludge, and lytic phages directly decrease the population size of their host bacterial groups in EBPR activated sludge by lysis.

Development of ELISA for Brucella abortus RB51 II. Purification of 8kDa antigen and development of ELISA using its antigen of Brucella abortus RB51 (부루세라 RB51의 ELISA 진단법 개발 II. Brucella abortus RB51균의 8kDa 항원 정제 및 ELISA 진단법 개발)

  • Her, Moon;Cho, Dong-hee;Jung, Byeong-yeal;Cho, Seong-kun;Jung, Suk-chan;Kim, Ok-kyung
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • A procedure for extraction and purification of 8 kDa antigen of Brucella abortus RB51 was developed. Bacteria heat inactivated at $60^{\circ}C$, 30 min was extracted by 1% sarcosine and followed by fluid pressure liquid gel filtration chromatography of 2 series, Superose 12 HR 10/30 and Sephacryl S-100. There was produced $71.46{\mu}g/g$(wet) of 8 kDa antigen, and it resisted 1% trypsin, solved 1% triton X-100 higher than distilled water and inactivated 0.1% proteinase K. These results show that 8 kDa antigen may be a lipoprotein existed cell surface of B. abortus RB51. Also, we developed ELISA using purified 8 kDa surface antigen of Brucella abortus RB51 strain, its specificity and sensitivity was 95.0%, 98.6%, respectively. As compared with dot-blot assay using whole cell and ELISA using 8 kDa antigen, its correlation was 93.5%.

  • PDF

Xylanase properties of Bacillus subtilis AB-55 isolated from waste mushroom bed of Agaricus bisporus (양송이 수확 후 배지로부터 분리한 Bacillus subtilis AB-55가 생산하는 xylanase의 특성)

  • Choi, Won-Ho;Choi, Yong-Su;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.255-261
    • /
    • 2012
  • A bacterium AB-55, isolated from waste mushroom bed of Agaricus bisporus in Sukseong-myeon, Buyeo-gun, Chungcheongnam-do, Korea, was screened onto xylan agar congo-red plate by the xylanolysis method and was used to produce an xylanase in shaker buffle flask cultures containing oat spelt xylans. The phylogenetic analysis using 16S rRNA gene sequence data showed that the strain AB-55 had the highest homology (99.0%) with Bacillus subtilis and it was named as Bacillus subtilis AB-55. A xylanase was purified by ammonium sulfate precipitation (50~80%), gel filtration on sephacryl S-300, and ion exchange chromatography on DEAE sepharose FF. The molecular weight of the xylanase was estimated as 44 kDa by SDS-PAGE. Optimal pH and temperature for the xylanase activity was pH 7 and $50^{\circ}C$, respectively. N-terminal amino acid sequence of the enzyme was identified as Ser-Ala-Val-Lys-His-Gly-Ala-Ile-Val-Phe. The substrate specificity of the enzyme exhibited that it hydrolyzed efficiently oat spelt xylan as well as beechwood xylan, but showed no activity against Avicel and carboxymethyl clellulose (CMC). The enzyme activity was enhanced by $Fe^{2+}$ and $Mn^{2+}$ whereas was entirely inhibited by $Hg^+$.