• Title/Summary/Keyword: Strain Sensors

Search Result 537, Processing Time 0.028 seconds

Study on the Dynamic Response Characteristics of Impact Force Sensors Based on the Strain Gage Measurement Principle (변형률 게이지 측정원리를 이용한 충격하중 측정 센서의 동적응답 특성에 관한 연구)

  • Ahn, Jung-Lyang;Kim, Seung-Kon;Sung, Nak-Hoon;Song, Young-Soo;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • In order to estimate blast damage zone and control rock fragmentation in blasting, it is important to obtain information regarding blast hole pressure. In this study, drop impact tests of acrylic, aluminium, steel sensors were performed to investigate the dynamic response characterizations of the sensors through the strain signals. As a result, the strain signals obtained from the steel sensors showed less sensitivity to impact force level and experienced small changes with various length of the sensors. The steel sensors were applied to measure the impact force of an electric detonator.

Strain Transmission Characteristics of Packaged Fiber Bragg Grating Sensors for Structural Health Monitoring

  • Cho, Sung-In;Yoo, Seung-Jae;Kim, Eun-Ho;Lee, In;Kwon, Il-Bum;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.236-243
    • /
    • 2010
  • Fiber Bragg grating(FBG) sensor arrays can be used to monitor the mechanical behavior of the large composite structures such as wind turbine rotor blades and aircrafts. However, brittle FBG sensors, especially multiplexed FBG sensors are easily damaged when they are installed in the flexible structures. As a protection of brittle FBG sensors, epoxy packaged FBG sensors have been presented in this paper. Finite element analysis and experiments were performed to evaluate the effects of adhesives, packaging materials and the bonding layer thickness on the strain transmission. Two types of epoxy were used for packaging FBG sensors and the sensor probes were attached with various bonding layer thickness. It was observed that thin bonding layer with high elastic modulus ratio of the adhesive to packaging provided good strain transmission. However, the strain transmission was significantly decreased when elastic modulus of the adhesive was much lower than the packaged FBG sensor probe's one.

Strain monitoring of overhead contact line with FBG sensors (FBG 센서를 활용한 가공 전차선의 스트레인 모니터링)

  • Choi, Won-Seok;Ko, Ki-Han;Lee, Kyung-Bok;Park, Young;Cho, Yong-Hyeon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1227-1230
    • /
    • 2008
  • This paper reports on measurement method for the fiber optic strain monitoring of overhead contact line systems of trains. We used fiber Bragg grating (FBG) sensors to measure the strain variation of overhead contact line. FBG sensors were attached on the contact line and connected to the monitering system with optical fibers. The monitering system with FBG sensors showed very good sensitivity to measuring strain variation and this system could be applied to the overhead contact line of KTX.

  • PDF

The Classification and Investigation of Smart Textile Sensors for Wearable Vital Signs Monitoring (웨어러블 생체신호 모니터링을 위한 스마트텍스타일센서의 분류 및 고찰)

  • Jang, Eunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.6
    • /
    • pp.697-707
    • /
    • 2019
  • This review paper deals with materials, classification, and a current article investigation on smart textile sensors for wearable vital signs monitoring (WVSM). Smart textile sensors can lose electrical conductivity during vital signs monitoring when applying them to clothing. Because they should have to endure severe conditions (bending, folding, and distortion) when wearing. Imparting electrical conductivity for application is a critical consideration when manufacturing smart textile sensors. Smart textile sensors fabricate by utilizing electro-conductive materials such as metals, allotrope of carbon, and intrinsically conductive polymers (ICPs). It classifies as performance level, fabric structure, intrinsic/extrinsic modification, and sensing mechanism. The classification of smart textile sensors by sensing mechanism includes pressure/force sensors, strain sensors, electrodes, optical sensors, biosensors, and temperature/humidity sensors. In the previous study, pressure/force sensors perform well despite the small capacitance changes of 1-2 pF. Strain sensors work reliably at 1 ㏀/cm or lower. Electrodes require an electrical resistance of less than 10 Ω/cm. Optical sensors using plastic optical fibers (POF) coupled with light sources need light in-coupling efficiency values that are over 40%. Biosensors can quantify by wicking rate and/or colorimetry as the reactivity between the bioreceptor and transducer. Temperature/humidity sensors require actuating triggers that show the flap opening of shape memory polymer or with a color-changing time of thermochromic pigment lower than 17 seconds.

Study on FBG Sensors for Hull Stress Monitoring (선체 응력 모니터링을 위한 FBG 센서에 대한 연구)

  • Kim, Yu-Mi;Lee, Nam-Kwon;Lee, Seung-Hwan;Bae, Dong-Myung;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.276-282
    • /
    • 2012
  • Vessels receive stress during their navigations as well as during their cargo operations. This stress may cause damages to the hull and may result in accidents. So the hull stress monitoring system(HSMS) is recommended in order to prevent these accidents. In this paper, we manufactured fiber Bragg grating(FBG) sensor and the model ship for towing tank experiments. The strain characteristics of the model ship on the water wave were measured through the towing tank experiment. The FBG sensors and electric strain gauges were attached on the connection jig, and then the characteristics of the FBG sensor were compared with those of the electric strain gauge. The strain of model ship was increased according to the increment of the amplitude of water wave. In particular, the largest strain was measured in the center of the model ship. As the wave period increased, the strain of model ship was decreased.

Spectrum analysis of the FBG sensor signal and location determination of FBG sensor into the $H_2$ pressure vessel (해석적인 기법을 통한 FBG 센서의 스펙트럼 분석 및 수소고압용기의 센서 삽입위치 결정)

  • Park, S.O.;Kim, C.U.;Park, J.S.;Kim, C.G.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.25-28
    • /
    • 2005
  • The optical fiber is known for the proper sensor which can accomplish the structural health monitoring, Fiber Bragg Grating sensors are being studied more than any other fiber optic sensors due to good multiplexing capabilities. But because the signal stability of FBG sensors can be influenced by the strain gradient, it needs to analyze signal of FBG sensors. Particularly acoording to strain gradient induced by structural geometry or cracks, the spectrum peak of the FBG sensor signal can be split easily. In this paper, the spectrum analysis of the FBG sensor signal was performed and the region of embedment of FBG sensors was determined in $H_2$ pressure vessel by numerical method.

  • PDF

Novel Long-period Fiber Grating devices for Monitoring the Deformation of Ship Hull (선체의 변형을 감지하기 위한 새로운 형태의 장주기 광섬유 격자 소자)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.761-767
    • /
    • 2007
  • We have developed novel optical-fiber sensors based on strain-induced long-period fiber gratings for monitoring the deformation of a hull. They have no external pressure for sustaining the mechanical formed gratings. The pressure, which provides a force to form the periodic grating along the single mode fiber, was realized by the bonding strength of a photopolymer. To reduce the polarization dependency of the sensors caused by the asymmetry structure of gratings, a Faraday Rotator Mirror (FRM) was utilized in this experiment. We have realized the polarization-insensitive function of the proposed sensors. The change of an external strain are measured by an optical spectrum analyzer. When the external stain increases. the attenuation at the resonant wavelength decreases and the loss peak was slightly shifted to the shorter wavelength.

Application of Combined-Type Sensors for the Behavioral Measurement of Concrete Beams (콘크리트 보의 거동 측정을 위한 조합형 센서의 활용)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.454-461
    • /
    • 2003
  • This study addressed a procedure to carry out an experimental study on a behavior of simple and continuous concrete beams. For this purpose, sample concrete beams were fabricated and sensors for the measurement of strains and deflections were attached both on the surface of the beams and inside them. Two types of sensors were used to measure strains associated with loading: electric resistance strain sensors and fiber optic sensors. Displacement gauges were also attached on the bottoms of beams to investigate the behavior of beams more rationally. The behavior of the beams was then evaluated throughout the results measured from different sensors while they were subject to steady loading up to failure. From results of this study, it was found that concurrent use of sensors and displacement gauges is helpful in investigating the behavior of concrete beams more effectively. Especially, combined-type strain sensors specifically fabricated in this experiment were found not to be affected by the occurrence of cracks so significantly and to be very effective in monitoring strains of concrete structure. It was also observed that beams show nonlinear force-displacement relationship and reinforcing bars take charge of resisting the external force once cracks occur in concrete beams.

Operation load estimation of chain-like structures using fiber optic strain sensors

  • Derkevorkian, Armen;Pena, Francisco;Masri, Sami F.;Richards, W. Lance
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.385-396
    • /
    • 2017
  • The recent advancements in sensing technologies allow us to record measurements from target structures at multiple locations and with relatively high spatial resolution. Such measurements can be used to develop data-driven methodologies for condition assessment, control, and health monitoring of target structures. One of the state-of-the-art technologies, Fiber Optic Strain Sensors (FOSS), is developed at NASA Armstrong Flight Research Center, and is based on Fiber Bragg Grating (FBG) sensors. These strain sensors are accurate, lightweight, and can provide almost continuous strain-field measurements along the length of the fiber. The strain measurements can then be used for real-time shape-sensing and operational load-estimation of complex structural systems. While several works have demonstrated the successful implementation of FOSS on large-scale real-life aerospace structures (i.e., airplane wings), there is paucity of studies in the literature that have investigated the potential of extending the application of FOSS into civil structures (e.g., tall buildings, bridges, etc.). This work assesses the feasibility of using FOSS to predict operational loads (e.g., wind loads) on chain-like structures. A thorough investigation is performed using analytical, computational, and experimental models of a 4-story steel building test specimen, developed at the University of Southern California. This study provides guidelines on the implementation of the FOSS technology on building-like structures, addresses the associated technical challenges, and suggests potential modifications to a load-estimation algorithm, to achieve a robust methodology for predicting operational loads using strain-field measurements.

On-line Strain Measurement of Rotating Blade Using Fiber Bragg Grating Sensors and Beam Coupler (광섬유 격자 센서와 빔 커플러를 사용한 회전중인 블레이드의 변형률 측정 방법)

  • Lee, In-Jae;Lee, Jong-Min;Lee, Sang-Bae;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1172-1178
    • /
    • 2006
  • Measurement of blade strain with sensors directly installed on the blade has one critical issue, how to send the sensor signal to the ground. Strain-gauges have been dominantly used to directly measure stress of a blade and either a slip ring or a telemetry system has to be used to send measured signal to the ground. However, both systems have many inherent problems and sometimes very severe limitations to be practically used. In this paper, new on-line strain monitoring method using. FBG(Fiber Bragg Grating) sensors and a beam coupler is introduced. Measurement of rotor stress using FBG sensors is nothing new, but unlike other system which installs all necessary instruments on the rotor and use telemetry system to send data to the ground, this system makes use of light's unique characteristic - light travels through space. In this new approach, single optical fiber with many FBG sensors is installed on the blade and all other necessary instruments can be installed at ground thereby giving tremendous advantages over slip ring or telemetry system. A reference sensor is also introduced to compensate the beam coupler's transmission loss change due to rotation. The suggested system's good performance is demonstrated with experiments.