• 제목/요약/키워드: Strain Sensors

검색결과 537건 처리시간 0.026초

Highly Stretchable and Sensitive Strain Sensors Fabricated by Coating Nylon Textile with Single Walled Carbon Nanotubes

  • Park, Da-Seul;kim, Yoonyoung;Jeong, Soo-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.363.2-363.2
    • /
    • 2016
  • Stretchable strain sensors are becoming essential in diverse future applications, such as human motion detection, soft robotics, and various biomedical devices. One of the well-known approaches for fabricating stretchable strain sensors is to embed conductive nanomaterials such as metal nanowires/nanoparticles, graphene, conducting polymer and carbon nanotubes (CNTs) within an elastomeric substrate. Among various conducting nanomaterials, CNTs have been considered as important and promising candidate materials for stretchable strain sensors owing to their high electrical conductivity and excellent mechanical properties. In the past decades, CNT-based strain sensors with high stretchability or sensitivity have been developed. However, CNT-based strain sensors which show both high stretchability and sensitivity have not been reported. Herein, highly stretchable and sensitive strain sensors were fabricated by integrating single-walled carbon nanotubes (SWNTs) and nylon textiles via vacuum-assisted spray-layer-by-layer process. Our strain sensors had high sensitivity with 100 % tensile strain (gauge factor ~ 100). Cyclic tests confirmed that our strain sensors showed very robust and reliable characteristic. Moreover, our SWNTs-based strain sensors were easily and successfully integrated on human finger and knee to detect bending and walking motion. Our approach presented here might be route to preparing highly stretchable and sensitive strain sensors with providing new opportunity to realize practical wearable devices.

  • PDF

웨어러블 텍스타일 스트레인 센서 리뷰 (Wearable Textile Strain Sensors)

  • 노정심
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

강성도 국부 변환 신축성 기판 위에 제작된 박막 트랜지스터 기반 변형률 센서 (Thin-Film Transistor-Based Strain Sensors on Stiffness-Engineered Stretchable Substrates)

  • 조영민;류경인;정성준
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.386-390
    • /
    • 2023
  • Stiffness-engineered stretchable substrate technology has been widely used to produce stretchable displays, transistors, and integrated circuits because it is compatible with various flexible electronics technologies. However, the stiffness-engineering technology has never been applied to transistor-based stretchable strain sensors. In this study, we developed thin-film transistor-based strain sensors on stiffness-engineered stretchable substrates. We designed and fabricated strain-sensitive stretchable resistors capable of inducing changes in drain currents of transistors when subjected to stretching forces. The resistors and source electrodes of the transistors were connected in series to integrate the developed stretchable resistors with thin-film transistors on stretchable substrates by printing the resistors after fabricating transistors. The thin-film transistor-based stretchable strain sensors demonstrate feasibility as strain sensors operating under strains of 0%-5%. This strain range can be extended with further investigations. The proposed stiffness-engineering approach will expand the potential for the advancement and manufacturing of innovative stretchable strain sensors.

Applications of Cure Monitoring Techniques by Using Fiber Optic Strain Sensors to Autoclave, FW and Rm Molding Methods

  • Fukuda, Takehito;Kosaka, Tatsuro;Osaka, Katsuhiko
    • Composites Research
    • /
    • 제14권6호
    • /
    • pp.47-58
    • /
    • 2001
  • This paper describes applications of cure monitoring techniques by using embedded fiber optic strain sensors, which are extrinsic Fabry-Perot interoferometric (EFPI) and/or fiber Bra99 grating (FBG) sensors, to three kinds of molding methods of autoclave, FW and RTM molding methods. In these applications, internal strain of high-temperature curing resin was monitored by EFPI sensors. From theme experimental results, it was shown that strain caused by thermal shrink at cooling stage could be measured well. In addition, several specific matters to these molding methods were considered. As thor an autoclave molding of unidirectional FRP laminates, it was confirmed that off-axis strain of unidirectional FRP could be monitored by EFPI sensors. As for FW molding using room-temperature (RT) cured resin, it was found that the strain outputs from EFPI sensors represented curing shrinkage as well as thermal strain and the convergence meant finish of cure reaction. It was also shown that this curing shrinkage should be evaluated with consideration on logarithmic change in stiffness of matrix resin. As for a RTM melding, both EFPI and FBC sensors were employed to measure strain. The results showed that FBG sensors hale also good potential for strain monitoring at cooling stage, while the non-uniform thermal residual strain of textile affected the FBG spectrum after molding. This study has proven that embedded fiber optic strain sensors hale practical ability of cure monitoring of FRP. However, development of automatic installation methods of sensors remains as a problem to be solved for applications to practical products.

  • PDF

광섬유 센서에 의한 말뚝 하중전이 측정 (Measurement of Pile Load Transfer using Optical Fiber Sensors)

  • 오정호;이원제;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF

FBG센서를 이용한 반복하중을 받는 RC보의 계측 시스템 개발 (Development of Measuring Data System of Reinforced Concrete Beam Under Cyclic Loading Using Fiber Bragg Grating Sensors)

  • 곽계환;장화섭;정현수;양동운
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.440-447
    • /
    • 2005
  • In this study, strain measurement and its applicability to estimated deflection curve using fiber bragg grating sensors was conducted. For this purpose, reinforced concrete beams were made and sensors were attached both on the surface of the beams and inside steel. Two types of sensors were used to detect strain on the beams and steel : fiber bragg grating sensors, electric resistance strain sensors. So fatigue test is done with measuring strain of specimen. In addition, this experiments estimates the optimum deflection curve that converts strain curve data measured by FBG sensors into deflection.

  • PDF

광섬유 변형률 센서를 이용한 구조물의 동적 변형 추정 (Dynamic Deformation Estimation of Structures Using Fiber Optic Strain Sensors)

  • 강래형;김대관;;;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1279-1285
    • /
    • 2006
  • In this study, structural deformation estimation using displacement-strain relationship is investigated. When displacements of a structure cannot be measured directly, estimation of displacements using strain data can be an alternative solution. Additionally, the deformation of the whole structure as well as the displacement at the point of interest can be estimated. Strain signals are obtained front Fiber Bragg Grating(FBG) sensors that have an excellent multiplexing ability. Some experiments were performed on two beams and a plate to which FBG sensors were attached in the laboratory. Strain signals from FBG sensors along a single strand of optical fiber were obtained through wavelength division multiplexing(WDM) method. The beams and the plate structures were subjected to various loading conditions, and deformed shapes were reconstructed from the displacement-strain transformation relationship. The results show good agreements with those measured directly from laser sensors. Moreover, the whole structural shapes of the beams and the plate were estimated using only some strain sensors.

광섬유 센서를 이용한 구조물의 열변형 및 온도 측정 (Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

Study on Stress Transfer Property for Embedded FBG Strain Sensors in Concrete Monitoring

  • Jang, Il-Young;Yun, Ying-Wei
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.33-37
    • /
    • 2009
  • Fiber Bragg grating (FBG) sensors already have been the focus for structural health monitoring (SHM) due to their distinguishing advantages. However, as bare optical fiber is very fragile, bare FBG strain sensor without encapsulation can not properly be applied in practical infrastructures. Therefore encapsulation techniques for making encapsulated FBG strain sensor show very important in pushing forward the application of FBG strain sensors in SHM. In this paper, a simplified approximate method to analyze the stress transferring rules for embedded FBG strain sensors in concrete monitoring is put forward according to mechanics of composite materials. Shear lag theory is applied to analyze the stress transferring rule of embedded FBG strain sensor in measured host material at the first time. The measured host objects (concrete) and the encapsulated FBG strain sensor are regarded as a composite, and then the stress transfer formula and stress transfer coefficient of encapsulated FBG strain sensor are obtained.

광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측 (Monitoring of Beam-column Joint Using Optical Fiber Sensors)

  • 김기수
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.3-11
    • /
    • 2005
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplexibility in one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability and dominate the strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.