The effect of the microstructural change on the near threshold fatigue crack growth rate in SM40C steel has been studied using the ${\Delta}K$ decreasing method. Below the total strain amplitude of 0.56%, cyclic softening occured, whereas above this value cyclic hardening occurred in the pearlitic lamellar structure. However, in the spherodized structure the cyclic hardening solely occurred. The crack growth rate in the near-threshold region was decreased with increasing prior austenite grain size and this was due to surface roughness. The crack growth rate of the spherodized structure was lower than that of the pearlite lamellar structure and the ${\Delta}K_{th}$ of the former was higher than that of the latter. It was understood that the crack propagates preferentially through the ferrite phase. The intergranular facets in the near-threshold region appeared in the spherodized structure.
Park, Woong-Sup;Kang, Ki-Yeob;Chun, Min-Sung;Lee, Jae-Myung
Journal of the Society of Naval Architects of Korea
/
v.48
no.3
/
pp.189-199
/
2011
Austenite stainless steel(ASS), aluminum alloy and nickel steel alloy are the most widely used in many cryogenic applications due to superior mechanical properties at low temperature. The Face-Centered Cubic(FCC) and Hexagonal Close-Packed(HCP) materials are used for the primary and secondary insulation barrier of Liquefied Natural Gas(LNG) carrier tank and various kinds of LNG applications currently. In this study, tensile tests of ASS, aluminum alloy and nickel steel alloy were carried out for the acquisition of quantitative mechanical properties under the cryogenic environment. The range of thermal condition was room temperature to $-163^{\circ}C$ and strain rate range was 0.00016/s to 0.01/s considering the dependencies of temperatures and strain rates. The comprehensive test data were analyzed in terms of the characteristics of mechanical behavior for the development of constitutive equation and its application.
A constitutive model was implemented in ABAQUS code, The constitutive equation can model the behavior for overall range of strain level from small to large deformation, which is based on anisotropic hardening rule and total stress concept. The formulation includes (1) finite strain formulation on the basis of Jaumann rate, (2) implicit stress integration and (3) consistent tangent moduli. Therefore, the mathematical background was established in order that large deformation analysis can be performed accurately and efficiently with the anisotropic constitutive model. Companion paper(Jeon et al., 2002) will contain the large deformation analysis results of examples with the constitutive model using ABAQUS.
Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
Journal of the Society of Naval Architects of Korea
/
v.53
no.2
/
pp.85-91
/
2016
The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.
The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.13
no.5
/
pp.50-56
/
2014
A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.
Kim, Sung-Woo;Eom, Ki-Hyun;Lim, Yun-Soo;Kim, Dong-Jin
Nuclear Engineering and Technology
/
v.51
no.4
/
pp.1060-1068
/
2019
This work aims to establish a model of a primary water stress corrosion crack growth rate of Alloy 690 material for the head penetration nozzles of Korean pressurized water reactors. The test material had an inhomogeneous microstructure with bands of fine-grains and intragranular carbides in the matrix of coarse-grains, which was similar to the archive materials of the head penetration nozzles. The crack growth rate was measured from the strain-hardened materials as a function of the stress intensity factor in simulated primary water at various temperatures and dissolved hydrogen contents. The effects of strain-hardening, temperature, and dissolved hydrogen on the crack growth rate were analyzed independently, and were then introduced as normalizing factors in the crack growth rate model. The crack growth rate model proposed in this work provides a key element of the tools needed to assess the progress of a stress corrosion crack when detected in thick-wall Alloy 690 components in Korean reactors.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2003.10a
/
pp.148-151
/
2003
In order to achieve reliable but cost-effective crash simulations of stamped parts, sheet forming process effects were incorporated in simulations using the ideal forming theory mixed with the 3D hybrid membrane/shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost-effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet forming effects to crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the non-quadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6114-T4 aluminum alloy sheets.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2004.05a
/
pp.233-236
/
2004
The major objective of this paper is to clarify the effect of constitutive laws on bulk forming design based on the ideal flow theory. The latter theory is in general applicable for perfectly/plastic materials. However, its kinematics equations constitute a closed-form system, which are valid for any incompressible materials, therefore enabling us to extend design solutions based on the perfectly/plastic constitutive law to more realistic laws with rate sensitive hardening behavior. In the present paper, several constitutive laws commonly accepted for the modeling of cold and hot metal forming processes are considered and the effect of these laws on one particular plane-strain design is demonstrated. The closed form solution obtained describes a non-trivial nonsteady ideal process. The design solutions based on the ideal flow theory are not unique. To achieve the uniqueness, the criterion that the plastic work required to deform the initial shape of a given class of shapes into a prescribed final shape attains its minimum is adopted. Comparison with a non-ideal process is also made.
Kim, Am-Kee;Chun, Yong-Du;Lee, Kum-Bae;Kim, Chang-Hoon;Nahm, Seung-Hoon
Proceedings of the KSME Conference
/
2003.04a
/
pp.403-408
/
2003
The erosion behavior of :artificially aged HK40 steel was investigated. Erosion tests were conducted at room temperature, $200^{\circ}C$ and $400^{\circ}C$ using $Al_2O_3$ particles. Erosion rates increased with increment of temperature. The maximum erosion rate increased with the impingement angle of 30 degree. The erosion rate increased, reached the maximum at 1000 hours, and after that, decreased with heat treatment time. The mechanism of erosion seems to be the cutting wear which is very much associated with the strength of material. As results, the erosion rates were rather affected by the tensile strength and the strain hardening coefficient than the hardness and the yield strength. Such changes of material properties would be caused by the change of micro-structure due to the precipitation of carbide and the dissolution of solid element within matrix during the heat treatment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.