• Title/Summary/Keyword: Strain Controlled

Search Result 462, Processing Time 0.039 seconds

Effects of temperature on the ratcheting behavior of pressurized 90° elbow pipe under force controlled cyclic loading

  • Chen, Xiaohui;Wang, Xingang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.473-485
    • /
    • 2017
  • Ratcheting behavior of $90^{\circ}$ elbow piping subject to internal pressure 20 MPa and reversed bending 20 kN was investigated using experimental method. The maximum ratcheting strain was found in the circumferential direction of intrados. Ratcheting strain at flanks was also very large. Moreover, the effect of temperature on ratcheting strain of $90^{\circ}$ elbow piping was studied through finite element analysis, and the results were compared with room condition ($25^{\circ}$). The results revealed that ratcheting strain of $90^{\circ}$ elbow piping increased with increasing temperature. Ratcheting boundary of $90^{\circ}$ elbow piping was determined by Chaboche model combined with C-TDF method. The results revealed that there was no relationship between the dimensionless form of ratcheting boundary and temperature.

The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel (STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향)

  • Lee, Hyun-Seung;Sin, Hyung-Ju;Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

Study of Warm Forging Process for Non-Heat-Treated Steel (비조질강 온간단조를 위한 공정검토)

  • Park, J.S.;Kang, J.D.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.525-530
    • /
    • 2001
  • As a part of efforts to examine feasibility of warm forging near-net-shape process for non-heat-treated steel to replace quenched and tempered S45C steel, the optimized process condition has been determined to be $820^{\circ}C$ for heating, 10/sec for strain rate of forging and approximately 250MPa for flow stress from observed results such as the $A_{3}$ transformation temperature of about $790^{\circ}C$, the fully dynamic recrystallized behavior between $800^{\circ}C\;and\;850^{\circ}C$ when compressed up to 63% engineering strain at 10/sec strain rate, and the high temperature microsturctural stability. Also, controlled cooling rate of $6.3^{\circ}C/sec$ by water-spraying at a rate of $0.10cc/sec-cm^{2}$ for 60seconds followed by air-cooling right after forging process has been considered in this study as a feasible approach based on examination of the microsturcture of mixed ${\alpha}-ferrite$ and pearlite, the hardness and tensile properties meeting specification, and the reduced total cooling time to room temperature. Successive works would be carried out for the impact strength, machinalility, and forgeability at this process in the near future.

  • PDF

A novel dual stress/strain-controlled direct simple shear apparatus to study shear strength and shear creep of clay

  • Chen Ge;Zhu Jungao;Wang Tao;Li Jian;Lou Qixun;Li Tao
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.615-627
    • /
    • 2024
  • Direct simple shear test is an effective method to measure strength and deformation properties of soil. However, existing direct simple shear apparatus have some shortcomings. The paper has developed a novel dual stress/strain-controlled direct simple shear apparatus. The novel apparatus has the following advantages: A rectangular specimen is used that effectively avoid common issues associated with conventional cylindrical specimens, such as specimen tilting. The utilization of deformation control rods ensures a uniform shear deformation of the specimen. Vertically integrated force transmission structure is improved that avoids issues arising from changes in pivot points due to lever tilting. Incorporating this novel direct simple shear apparatus, shear strength and shear creep tests of clay were performed. Shear strength parameters and shear creep behaviors are analyzed. The results of these experiments show that the novel apparatus can measure accurately the shear rheological properties of soil. This study provides strong guidance for studying the mechanical properties of soil in engineering practice.

The High Temperature Deformation Behavior of the Wrought Superalloy 718 (단조용 초내열 718 합금의 고온 변형 거동)

  • Na, Y.S.;Choe, S.J.;Kim, H.M.
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.179-191
    • /
    • 1996
  • In order to understand the high temperature deformation behavior of superalloy 718, a rotating grade 718 alloy has been compression tested to about 0.7 upset ratio at $927{\sim}1066^{\circ}C$ temperature range and $5{\times}10^{-4}{\sim}5{\times}10^0sec^{-1}$ strain rate. The maximum flow stress was increased with increasing strain rate, and similar behavior was observed with decreasing temperature. At low temperature and high strain rates other than $5{\times}10^{-1}sec^{-1}$, strain softening was occurred mainly by dynamic recovery and deformation twinning processes, while at high temperature and low strain rates strain softening was offseted by dynamic recrystallization. At $5{\times}10^{-1}sec^{-1}$, strain hardening was occurred due to work hardening of the dynamic recrystallized grains. Strain rate sensitivity, m, was varied with strain rates. In the case of lower strain rate tests, m was measured as 0.3 and it was observed that the deformation was mainly controlled by dynamic recrystallization. At higher strain rate, m was lowered to 0.1 and the deformation was controlled by the dynamic recovery and the deformation twinning processes.

  • PDF

Microstructural Study of Creep-Fatigue Crack Propagation for Sn-3.0Ag-0.5Cu Lead-Free Solder

  • Woo, Tae-Wuk;Sakane, Masao;Kobayashi, Kaoru;Park, Hyun-Chul;Kim, Kwang-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.33-41
    • /
    • 2010
  • Crack propagation mechanisms of Sn-3.0Ag-0.5Cu solder were studied in strain controlled push-pull creepfatigue conditions using the fast-fast (pp) and the slow-fast (cp) strain waveforms at 313 K. Transgranular cracking was found in the pp strain waveform which led to the cycle-dominant crack propagation and intergranular cracking in the cp strain waveform that led to the time-dominant crack propagation. The time-dominant crack propagation rate was faster than the cycle-dominant crack propagation rate when compared with J-integral range which resulted from the creep damage at the crack tip in the cp strain waveform. Clear recrystallization around the crack was found in the pp and the cp strain waveforms, but the recrystallized grain size in the cp strain waveform was smaller than that in the pp strain waveform. The cycle-dominant crack propagated in the normal direction to the specimen axis macroscopically, but the time-dominant crack propagated in the shear direction which was discussed in relation with shear micro cracks formed at the crack tip.

Biological Control of Crown Gall

  • Kerr, Allen;Biggs, John;Ophel, Kathy
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.11-26
    • /
    • 1994
  • Crown gall of stonefruit and nut trees is one of the very few plant diseases subject to efficient biological control. The disease is caused by the soil-inhabiting bacteria Agrobacterium tumefaciens and Agrobacterium rhizogenes and the original control organism was a non-pathogenic isolate of A. rhizogenes strain K84. Control is achieved by dipping planting material in a cell suspension of strain K84 which specifically inhibits pathogenic strains containing a nopaline Ti plasmid. Because the agrocin 84-encoding plasmid (pAgK84) is conjugative, it can be transmitted from the control strain to pathogenic strains which, as a result, become immune to agrocin 84 and cannot be controlled. To prevent this happening, the transfer genes on pAgK84 were located and then largely eliminated by recombinant DNA technology. The resulting construct, strain K1026, is transfer deficient but controls crown gall just as effectively as does strain K84. Field data from Spain confirm that pAgK84 can transfer to pathogenic recipients from strain K84 but not from strain K1026. The latter has been registered in Australia as a pesticide and is the first genetically engineered organism in the world to be released fro commercial use. It is recommended as a replacement for strain K84 to prevent a breakdown in the effectiveness of biological control of crown gall. Several reports indicate that both strains K84 and K1026 sometimes control crown gall pathogens that are resistant to agrocin 84. A possible reason for this is that both strains produce a second antibiotic called 434 which inhibits growth of nearly all isolates of A. rhizogenes, both pathogens and non-pathogens. Crown gall of grapevine is caused by another species, Agrobacterium vitis. It is resistant to agrocin 84 and cannot be controlled by strains K84 or K1026. It is different from other crown gall pathogens in several characteristics, including the fact that, although a rhizosphere coloniser, its also lives systemically in the vascular tissue of grapevine. Pathogen free propagating material can be obtained from tissue culture or, less surely, by heat therapy of dormant cuttings. A number of laboratories are searching for a biocontrol strain that will prevent, or at least delay, reinfection. A non-pathogenic A. vitis strain F/25 from South Africa looks very promising in this regard.

  • PDF

Controlled Formation of Surface Wrinkles and Folds on Poly (dimethylsiloxane) Substrates Using Plasma Modification Techniques

  • Nagashima, So;Hasebe, Terumitsu;Hotta, Atsushi;Suzuki, Tetsuya;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.223-223
    • /
    • 2012
  • Surface engineering plays a significant role in fabricating highly functionalized materials applicable to industrial and biomedical fields. Surface wrinkles and folds formed by ion beam or plasma treatment are buckling-induced patterns and controlled formation of those patterns has recently gained considerable attention as a way of creating well-defined surface topographies for a wide range of applications. Surface wrinkles and folds can be observed when a stiff thin layer attached to a compliant substrate undergoes compression and plasma treatment is one of the techniques that can form stiff thin layers on compliant polymeric substrates, such as poly (dimethylsiloxane) (PDMS). Here, we report two effective methods using plasma modification techniques for controlling the formation of surface wrinkles and folds on flat or patterned PDMS substrates. First, we show a method of creating wrinkled diamond-like carbon (DLC) film on grooved PDMS substrates. Grooved PDMS substrates fabricated by a molding method using a grooved master prepared by photolithography and a dry etching process were treated with argon plasma and subsequently coated with DLC film, which resulted in the formation of wrinkled DLC film aligning perpendicular to the steps of the pre-patterned ridges. The wavelength and the amplitude of the wrinkled DLC film exhibited variation in the submicron- to micron-scale range according to the duration of argon plasma pre-treatment. Second, we present a method for controlled formation of folds on flat PDMS substrates treated with oxygen plasma under large compressive strains. Flat PDMS substrates were strained uniaxially and then treated with oxygen plasma, resulting in the formation of surface wrinkles at smaller strain levels, which evolved into surface folds at larger strain levels. Our results demonstrate that we can control the formation and evolution of surface folds simply by controlling the pre-strain applied to the substrates and/or the duration of oxygen plasma treatment.

  • PDF

An Evaluation of Probabilistic Strain-Life Curve in Polyacetal (폴리아세탈 소재의 확률론적 변형률-수명선도 평가)

  • Jang, Cheon-Soo;Kim, Chul-Su;Park, Bum-Gyu;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1417-1424
    • /
    • 2006
  • In order to evaluate variation of fatigue life of mechanical components including engineering plastics, it is important to estimate probabilistic strain-life curves to accurately define the variation of fatigue characteristics. This paper intends to provide new assessment of P-$\varepsilon$-N (probabilistic strain-life curves) for considering the variation of fatigue characteristics in polyacetal. The fatigue strain controlled tests were conducted under constant 50% humidity and room temperature condition by a universal testing machine at strain ratio, R=0. A practical procedure is introduced to evaluate probabilistic strain-life curves. Three probabilistic distributions were used for generating P-$\varepsilon$-N curves such as normal, 2-parameter and 3-parameter Weibull. In this study, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probability distributions of the fatigue characteristic were examined using chi-square and Kolmogorov-Smirnov test. The more appropriate P-$\varepsilon$-N curves for these materials are generated by the proposed method considering 3-parameter Weibull distribution.

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.