• Title/Summary/Keyword: Straight Die

Search Result 39, Processing Time 0.025 seconds

A Study on Forming Characteristics in Plate Type Cross Rolling Process (평판형 전조압연의 성형특성 연구)

  • Yoon D. J.;Lee G. A.;Lee N. K.;Choi S.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

Experimental investigation on the flow control in non-axisym- metric flat die extrusion-II (비축대칭 평금형 압출에서 유동제어에 관한 실험적 연구-II)

  • 김영호;배원병;강범수;박재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.130-136
    • /
    • 1997
  • The velocity distrubution at the exit of extrusion die depends on the width of bearing land very much. When uniform bearing land without flow guide is used, the material which is extended through the same die does not, deflect to the constant direction, but when the flow guide is equipped and then the volume compensation is done accurately, the material deflects to one constant direction. Therfore, the part of problem can be known exactly, and extrusion products of straight shape can be produced by the corrected bearing land width.

  • PDF

Effects of sheet and stamping process variables on side wall curl (딥 드로잉 벽면 만곡에 미치는 소재 및 가공조건의 영향)

  • 박기철;한수식;조태현;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.53-57
    • /
    • 1998
  • In order to investigate the effects of the variables during the stamping process upon the side wall curl behavior, experiments and finite element analyses were done using a 90 degree draw-bending test. The variables considered were the die radius, the forming speed, the restraint force, the lubrication and the sheet grade. The experiments and simulation conditions were selected according to the design of experiment (DOE) approach. The effects of the restraint force, the lubrication and the forming speed were the same for both high strength and mild steels, but the effects of the die radius on the side wall curl were dependent on the magnitude of the die radius and the sheet grade. A straight side wall was observed for both high strength and mild steels when the die radius was about 2∼3 times of the sheet thickness. It was recommended that the restraint force, the forming speed and the friction be increased in order to reduce the side wall curl.

  • PDF

Experimental Investigation on the Flow Control in Non-Axisymmetric Flat Die Extrusion-1 (비축대칭 평금형 압출에서 유동제어에 관한 실험적 연구-I)

  • Bae, W.B.;Kim, Y.H.;Park, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.136-141
    • /
    • 1996
  • In this paper, the design variables of the extruded parts involving flat die through model experiment are investigated to overcome some current problems such as bending and twisting and get more improved quality products. Above all, the deformation behavior is analyzed in experiment and investigated flow charactristics inside container. Finally, the straight extruded product is obtained by modified bearing land width on the basis of the exit velocities distribution from bended and twisted products.

  • PDF

Closed-Die Forging Analysis of Clutch Teeth Using An Upper Bound Elemental Technique (상계요소법에 의한 클러치 치형의 밀폐단조해석)

  • 양정호;이상태;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.134-138
    • /
    • 1996
  • A simple kinematically admissible velocity field for closed-die forging of clutch teeth is analysed which takes account of the profiled teeth chosen kinematically by approximating these as straight taper teeth. The upper bound load and the deformed configurations are predicted by the velocity field at varying punch movements considering differing frictional factors. Experiments were carried out using a model material of plasticine at room temperature where talcum powder was used as a lubricant. The theoretical predictions of the forging load and the relative pressures are found to be in reasonably good agreement with the experimental results.

  • PDF

A Study on Characteristics of the Material Flow Side-Extrusion by UBET (UBET에 의한 측방압출에서의 재료유동특성에 관한 연구)

  • Kim, Kang-Soo;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.116-121
    • /
    • 1999
  • Since the material flow near the die part in CONFORM (Continuous Extrusion Forming) process is similar to that of side-extrusion, the side-extrusion model of tube shaped aluminum profiles was studied for the die design in CONFORM process. In this paper, the effects of process parameters in the side -extrusion through a two-hole die face, such as material flow, height and thickness of the tube, velocities of punch and lengths of bearing land were investigated using UBET program and DEFORM commercial FEM code. The optimum lengths of the bearing lands and punch velocities for obtaining the straight shape products required were determined.

  • PDF

A Study on the Characteristics for the Blanking of Lead Frame with the Rectangular Shape Blanking (사각형 블랭킹을 통한 리드프레임의 블랭킹 특성에 관한 기초연구)

  • Lim, San-Heon;Suh, Eui-Kwon;Shim, Hyun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.182-188
    • /
    • 2001
  • An experiment is carried out to investigate the characteristics of blanking for copper alloy C194 (t=0.254mm), a kind of IC lead frame material. By varying clearance between die and punch, the shapes of shear profile are examined. Finite element analysis with element deletion algorithm for ductile fracture mode is also carried out to study the effect of clearance theoretically and to compare with experimental results. The rectangular shape specimen with four different corner radius is used to study the characteristics of blanking for straight side and corner region simultaneously. As the result, the ratios measured from the experiment of roll over, burnish, and fracture zone based on intial blank thickness are compared with those of FE analysis. Both experiment and FE analysis show that the amount of roll over and fracture is increased as the clearance increases. It has been found that larger clearance is required than that of straight region when the radius of corner is less than thickness of blank, in order to maintain same quality of shear profile at the corner region.

  • PDF

Application of CAD/CAM System to the Manufacturing and the Verification of Straight Bevel Gear with Crown Teeth (크라운 치형을 갖는 직선 베벨기어의 제작 및 검증을 위한 CAD/CAM 시스템 활용)

  • Lee, Kang-Hee;Park, Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.270-275
    • /
    • 2008
  • The straight bevel gear for automobile part has been manufactured by the cold forging instead of the gear machining tool for the mass production. The application to CAD/CAM system has been necessary in order to develop the precision product quickly by forging through the minimization of trial and error and confirm the reproducibility. In the study, the straight bevel gear with the crown teeth has been modelled by the CAD/CAM system. The master gear after the gearing test has been machined after the modelling, NC data generation and verification. The die for forging and the jig for machining has been manufactured using the master gear.

The effect of forging process conditions of semi-solid aluminum material on mechanical properties (반용융 알루미늄재료의 단조공정조건이 기계적 성질에 미치는 영향)

  • Gang, Chung-Gil;Gang, Dong-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1400-1413
    • /
    • 1997
  • Semi-solid forging(SSF) process of A356 aluminium alloy has been studied to assess the effect of process variables on the component integrity. Semi-solid material(SSM) was fabricated by mechanical and electro-magnetic stirring process. The fabricated SSM by using mechanical stirring process has been carried out on cooling rate of 0.022.deg. C/sec 0.0094.deg. C/sec and stirring speed n=600, 1000 rpm, respectively. The fabricated SSM by using electro-magnetic stirring process is supplied by Pechiney. The holding time and temperature in the semi-solid state before forging also affects the globular microstructure of alloy. Therefore, the influence of these two parameters is discussed in terms of the microstructure of alloy. The SSF process has been conducted with three different die temperatures($T_{die}$=250.deg. C, 300.deg. C, 350.deg. C) and two kinds of gate types(straight gate and orifice gate). This paper is to investigate the influence of gate shapes of die on filling phenomena in SSF process more deeply. The mechanical properties of forged components were also investigated for variation of process conditions such as die temperature, gate shape and SSM.

Improvement of Tubular Shaft Yoke Spline Machining in Both Side IMS Module (양형 IMS 모듈 튜블러 샤프트의 스플라인 가공 개선)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.924-928
    • /
    • 2018
  • The objective of this study is to solve a problem that is occurred during the spline machining of tubular shaft yoke in both side IMS module. In order to simulate the problem, the movement direction of upper die was set as standard case and error case. The material of tubular shaft yoke was set to S20C as refer to the analysis library. The movement directions of upper die were separated with standard case and error case. The error case was set to simulate the problem in the spline machining of tubular shaft yoke. In order to solve the problem, the outer radius of upper die were modelled from 9.40mm to 9.44mm. The simulation results were analyzed and compared in terms of effective stress, metal flow line and folding phenomena characteristics. In case of the outer radius of upper die was 9.42mm, it was observed a relatively uniform effective stress distribution and had a straight metal flow line.