• Title/Summary/Keyword: Story height

Search Result 199, Processing Time 0.024 seconds

Basic study for development of bottom-up infill module for high rise building (고층 건축물을 위한 bottom-up Infill module 개발 기초 연구)

  • Sung, Soojin;Lim, Chaeyeon;Na, Youngju;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.164-165
    • /
    • 2015
  • Modular construction technique is an adaptation of factory-based mass production concept in ordinary manufacturing industries to construction industry and it assumes that panels, units, etc. are fabricated in factories and assembled in construction sites. Given its structural limitations, modular construction technique is primarily used in low-story buildings whose maximum height is usually five stories, but researchers are actively studying possible adaptation of modular construction technique to high-rise building designs these days as in the case of infill-type modular construction design. Infill-type modular construction technique, most frequently used in high-rise building construction projects, completes frame construction first in reinforced concrete structures and fills unit modules in such structures. However, infill-type modular construction technique leads to longer construction schedule accompanying increase in construction cost, cost overrun due to additional of temporary work, and possible damage to units in the wake of facility construction. Accordingly, this study is performed as a basic study for the development of bottom-up infill-type modular construction technique intended to construct structural frames and fill in units sequentially in a bid to address such drawbacks of current infill-type modular construction technique.

  • PDF

Fundamental periods of reinforced concrete building frames resting on sloping ground

  • De, Mithu;Sengupta, Piyali;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.305-312
    • /
    • 2018
  • Significant research efforts were undertaken to evaluate seismic performance of vertically irregular buildings on flat ground. However, there is scarcity of study on seismic performance of buildings on hill slopes. The present study attempts to investigate seismic behaviour of reinforced concrete irregular stepback building frames with different configurations on sloping ground. Based on extensive regression study of free vibration results of four hundred seventeen frames with varying ground slope, number of story and span number, a modification is proposed to the code based empirical fundamental time period estimation formula. The modification to the fundamental time period estimation formula is a simplified function of ground slope and a newly introduced equivalent height parameter to reflect the effect of stiffness and mass irregularity. The derived empirical formula is successfully validated with various combinations of slope and framing configurations of buildings. The correlation between the predicted and the actual time period obtained from the free vibration analysis results are in good agreement. The various statistical parameters e.g., the root mean square error, coefficient of determination, standard average error generally used for validation of such regression equations also ensure the prediction capability of the proposed empirical relation with reasonable accuracy.

Insulation Saving Effect for Korean Apartment House Using Cross-Laminated Timber (CLT)

  • Pang, Sung-Jun;Lee, Bumjin;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.846-856
    • /
    • 2017
  • The aim of this study was to develop the details of cross-laminated timber (CLT) envelops for satisfying the design standard for energy saving (DSEA) and passive standard in South Korea. When the same thickness of 180 mm concrete or CLT was used and the same materials for other layers were used for the roof, wall, and interlayer floor, the required insulation thickness for the different building envelopes in central, southern, and Jeju island was evaluated. As a result, compared to the concrete envelop, about 43 mm of insulation thickness was reduced for wall and roof with the CLT envelope. When the CLT envelopes were modified to protect the CLT from moisture based on FPInnovations (2011), the insulation thickness was further reduced by 12 mm. When the modified CLT building envelops satisfied with a passive standard are used for 10-story building, the required insulation was decreased by $40.89m^3$ for a floor ($105.27m^2{\times}2.3m$ in height) compared to concrete building. As the number of floors increases, about 3.58 m3 of insulation per floor was additionally saved.

Analysis of Seismic Performance of Slim Flat Plate System in High-rise Hybrid Structural System (슬림형 바닥시스템을 이용한 고층 복합구조의 내진성능에 관한 해석적 연구)

  • Ha Gee Joo;Park Hyo Sun;Park Joung Hyen;Choi Kyung Ryeol;Kim Dae Joung;Jung Jea Kwang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.77-80
    • /
    • 2005
  • Recently the construction of high-rise hybrid type building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new hybrid structural system, using slim flat plate system, is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is ,with the economy and flexibility, flat plate system in high-rise hybrid type building. But it was focused in the seismic performance for high performance flat plate system in high-rise hybrid type building. Therefore, in the study, to develop the new flat-plate system with high ductile, durable, good performance for the applications. It was evaluated the seismic performance in the critical region of slab-column connection. And then high performance flat plate system, designed by the economy and safety, was developed as a new technique in the application of high-rise hybrid type building.

  • PDF

Damage controlled optimum seismic design of reinforced concrete framed structures

  • Gharehbaghi, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • In this paper, an innovative procedure is proposed for the seismic design of reinforced concrete frame structures. The main contribution of the proposed procedure is to minimize the construction cost, considering the uniform damage distribution over the height of structure due to earthquake excitations. As such, this procedure is structured in the framework of an optimization problem, and the initial construction cost is chosen as the objective function. The aim of uniform damage distribution is reached through a design constraint in the optimization problem. Since this aim requires defining allowable degree of damage, a damage pattern based on the concept of global collapse mechanism is presented. To show the efficiency of the proposed procedure, the uniform damage-based optimum seismic design is compared with two other seismic design procedures, which are the strength-based optimum seismic design and the damage-based optimum seismic design. By using the three different seismic design methods, three reinforced concrete frames including six-, nine-, and twelve-story with three bays are designed optimally under a same artificial earthquake. Then, to show the effects of the uniform damage distribution, all three optimized frames are used for seismic damage analysis under a suite of earthquake records. The results show that the uniform damage-based optimum seismic design method renders a design that will suffer less damage under severe earthquakes.

A Study on Reinforced Concrete Beams with Perforation (철근콘크리트 유공보에 관한 연구)

  • Park, Kyong-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.7-14
    • /
    • 2001
  • In building structure, the story height can be minimized by providing openings in beams which serves for the utility equipments passing through. The dead space in false ceiling thus put to economical use in the form of a substantial reduction in materials and construction cost. In the case of steel structure, there is no critical risk in the structural strength because of reinforcing methods of stiffness and steel plate but in the case of reinforced concrete structure, proper provision should be made in designing these openings, otherwise there is a risk that these opening will possibly weaken the structural strength of the building frame to a critical degree. In this paper, for the numerical analysis of the reinforced concrete beams with circular opening in the web, expecting stress concentration of the circular opening, reinforcing methods were studied. Twenty test pieces with each different reinforcing methods were tested and their resisting forces were defined. From the numerical analysis and test results, the followings were founded;(1)high shear stress distributed around the openings reduce the shearing strength, (2)from the numerical analysis, the maximum tensile stress occurred at opening nodes 1,7, these phenomena were agreed with the test results, (3)reinforcing method around openings have to carried out for stopping diagonal cracks, and (4)both, by steel plate, and wire mesh, are effective reinforcing methods.

  • PDF

A study of aerodynamic pressures on elevated houses

  • Abdelfatah, Nourhan;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.335-350
    • /
    • 2020
  • In coastal residential communities, especially along the coastline, flooding is a frequent natural hazard that impacts the area. To reduce the adverse effects of flooding, it is recommended to elevate coastal buildings to a certain safe level. However, post storm damage assessment has revealed severe damages sustained by elevated buildings' components such as roofs, walls, and floors. By elevating a structure and creating air gap underneath the floor, the wind velocity increases and the aerodynamics change. This results in varying wind loading and pressure distribution that are different from their slab on grade counterparts. To fill the current knowledge gap, a large-scale aerodynamic wind testing was conducted at the Wall of Wind experimental facility to evaluate the wind pressure distribution over the surfaces of a low-rise gable roof single-story elevated house. The study considered three different stilt heights. This paper presents the observed changes in local and area averaged peak pressure coefficients for the building surfaces of the studied cases. The aerodynamics of the elevated structures are explained. Comparisons are done with ASCE 7-16 and AS/NZS 1170.2 wind loading standards. For the floor surface, the study suggests a wind pressure zoning and pressure coefficients for each stilt height.

Inelastic Behavior and Seismic Retrofit of Inverted V Braced Steel Frames (역V형 철골 가새골조의 비탄성거동 및 내진성능향상 방안에 관한 연구)

  • Kim, Nam Hoon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.571-578
    • /
    • 2003
  • An effective seismic retrofit scheme for inverted V braced (or chevron type) steel frames was proposed by studying the redistribution of forces in the post-buckling range. The steel frames with chevron bracing are highly prone to soft story response once the compression brace buckles under earthquake loading. This paper shows that the seismic performance of such frames could be significantly improved by supplying tie bars to redistribute the inelastic deformation demand over the height of the building. A practical design method of the retrofit tie bars was also proposed by considering the sequence of buckling occurrence.

A Study on the Analytical Method for Fire Resistance Calculation of Asymmetric Slimfloor Beam (비대칭 슬림플로어 합성보의 내화성능 산정에 관한 해석적 방법 연구)

  • Park, Soo-Young;Park, Won-Sup;Kim, Heung-Youl;Hong, Gap-Pyo
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.31-37
    • /
    • 2010
  • Asymmetric Slimfloor Beam (ASB) is a composite beam developed in Europe whose asymmetric H beam is partially inserted in concrete slab. Recently in Korea, Asymmetric Slimfloor Beam has been studied in order to save the story height of a building, reduce the amount of construction materials and increase the fire resistance of a building. On this study, the fire resistance of Asymmetric Slimfloor Beam was checked by a fire test and moment capacity was calculated at fire resistance time by a heat-transfer analysis. Using the analysis result, 3-hour fire resistance constructions consisted of fireproof gypsum boards and ASB were selected and fire resistances of selected constructions were checked.

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.