• Title/Summary/Keyword: Story ductility

검색결과 200건 처리시간 0.024초

GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가 (An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP)

  • 류재호;박세호;주영규;김상대
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.125-135
    • /
    • 2011
  • 최근 타워형 아파트구조에 많이 사용되고 있는 무량판 구조시스템을 대신해 층고절감 및 장스팬 구현 그리고 내화성능향상을 목적으로 GFRP를 이용한 경량합성바닥을 개발하였다. GFRP를 이용한 경량합성바닥은 웨브에 개구부를 가지는 비대칭 강재보 하부에 GFRP를 부착하고 슬래브에 경량체를 삽입한 중공합성바닥이다. 이에 개발된 합성바닥의 휨성능을 평가하기 위해 GFRP, 중공률, 웨브의 개구부 등을 변수로 실대 실험을 수행하였다. 그 결과 GFRP를 이용한 합성보 실험체는 기준 실험체에 비해 휨내력 및 강성 측면에서 10% 높은 성능을 나타냈으며, 구조물이 항복할 때까지 완전합성거동하였다. 항복 이후 웨브개구부 주변의 응력집중현상에 의해 연성이 감소하는 현상이 나타났으며, 최대내력점까지 미끄러짐의 발생은 미소하였다. 내력설계 측면에서는 안전율을 고려해 해석값의 85%를 설계내력으로 평가하는 것이 타당한 것으로 나타났다.

비연성 철근 콘크리트 중력 프레임에 의한 지진 보강 (Seismic Rehabilitation of Nonductile Reidorced Concrete Gravity Frame)

  • Dong Choon Choi;Javeed A. Munsh;Kwang W. Kim
    • 한국농공학회지
    • /
    • 제43권5호
    • /
    • pp.116-123
    • /
    • 2001
  • This paper represents results of an effort to seismically rehabilitate a 12-story nonductile reinforced concrete frame building. The frame located in the most severe seismic area, zone 4, is assumed to be designed and detailed for gravity load requirements only. Both pushover and nonlinear time-history analyses are carried out to determine strength, deformation capacity and the vulnerability of the building. The analysis indicates a drift concentration at the $1^{st}$ floor level due to inadequate strength and ductility capacity of the ground floor columns. The capacity curve of the structure, when superimposed on the average demand response spectrum for the ensemble of scaled earthquakes indicates that the structure is extremely weak and requires a major retrofit. The retrofit of the building is attempted using viscoelastic (VE) dampers. The dampers at each floor level are sized in order to reduce the elastic story drift ratios to within 1%. It is found that this requires substantially large dampers that are not practically feasible. With practical size dampers, the analyses of the viscoelastically damped building indicates that the damper sizes provided are not sufficient enough to remove the biased response and drift concentration of the building. The results indicate that VE-dampers alone are not sufficient to rehabilitate such a concrete frame. Concrete buildings, in general, being stiffer require larger dampers. The second rehabilitation strategy uses concrete shearwalls. Shearwalls increased stiffness and strength of the building, which resulted in reducing the drift significantly. The effectiveness of VE-dampers in conjunction with stiff shearwalls was also studied. Considering the economy and effectiveness, it is concluded that shearwalls were the most feasible solution for seismic rehabilitation of such buildings.

  • PDF

2층 RC 전단벽식 구조물의 내진성능에 대한 정적 실험 (Static Experiment for the Seismic Performance of a 2 Story RC Shear Wall System)

  • 이상호;오상훈;황원태;이경보;이한선
    • 한국지진공학회논문집
    • /
    • 제14권6호
    • /
    • pp.55-65
    • /
    • 2010
  • 본 실험 연구의 목적은 횡방향 정적가력을 통하여 2층 R.C 전단벽식 구조의 내진성능을 평가하는 것이다. 본 연구의 실험체는 대상 건물의 개구부를 가지는 T자형 벽체 1층과 2층의 일부분을 대상으로 실물크기의 3/5 크기정도로 축소하였고, 인방보의 유 무를 실험변수로한 2개의 실험체를 제작하여 횡방향의 정적가력 실험을 수행하였다. 인방보 유무에 따른 벽체의 구조적 성능 및 거동의 차이를 비교한 결과, 인방보가 있는 실험체가 인방보가 없는 실험체보다 최대내력과 연성능력 등의 내진성능이 우수한 것으로 판단되었다.

New optimum distribution of lateral strength of shear-type buildings for uniform damage

  • Donaire-Avila, Jesus;Lucchini, Andrea;Benavent-Climent, Amadeo;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.279-291
    • /
    • 2020
  • The seismic design of conventional frame structures is meant to enhance plastic deformations at beam ends and prevent yielding in columns. To this end, columns are made stronger than beams. Yet yielding in columns cannot be avoided with the column-to-beam strength ratios (about 1.3) prescribed by seismic codes. Preventing plastic deformations in columns calls for ratios close to 4, which is not feasible for economic reasons. Furthermore, material properties and the rearrangement of geometric shapes inevitably make the distribution of damage among stories uneven. Damage in the i-th story can be characterized as the accumulated plastic strain energy (Wpi) normalized by the product of the story shear force (Qyi) and drift (δyi) at yielding. Past studies showed that the distribution of the plastic strain energy dissipation demand, Wpi/ΣWpj, can be evaluated from the deviation of Qyi with respect to an "optimum value" that would make the ratio Wpi/(Qyiδyi) -i.e. the damage- equal in all stories. This paper investigates how the soil type and ductility demand affect the optimum lateral strength distribution. New optimum lateral strength distributions are put forth and compared with others proposed in the literature.

깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발 (Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame)

  • 정시화;알미아이유 로벨 원디므;박만우;주영규
    • 대한건축학회논문집:구조계
    • /
    • 제35권4호
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.

극취성·전단·휨파괴형 수평저항시스템으로 구성된 저층 철근콘크리트 건물의 요구 내력 스펙트럼 (Demand Strength Spectrums of Low-Rise Reinforced Concrete Buildings Consisted of Extremely Brittle, Shear and Flexural Failure Systems)

  • 이강석;김정희;오재근
    • 콘크리트학회논문집
    • /
    • 제19권5호
    • /
    • pp.529-537
    • /
    • 2007
  • 대다수의 저층 RC 건물은 다양한 수평저항시스템으로 이루어져 있으며, 이것들은 각기 다른 변위에서 파괴될 것으로 판단된다. 그 가운데에서도, 강성 및 강도는 높지만 소성영역에서 극취성적인 파괴성상을 나타내는 극단주, 전단벽 등의 전단파괴형 부재 및 비교적 강성 및 강도는 낮지만 연성 능력이 탁월한 기둥 등의 휨파괴형 부재는 전형적인 수평저항시스템으로 다수의 피해지진에 의하여 그것들의 중요성이 대두되었다. 극단주, 전단벽, 휨기둥 등과 같이 서로 다른 성질의 역학적 특성을 가지는 내진 요소로 혼합된 저층 RC 건물의 내진성능을 평가하기 위해서는, 각각 부재의 내력과 변형 능력이 건물 전체의 내진성능에 어떻게 영향을 미치는가를 우선적으로 검토하는 것이 필요하다. 본 연구는 극단주 (극취성파괴형 부재), 전단벽 (전단파괴형 부재) 및 휨기둥 (휨파괴형 부재)이 혼합된 저층 RC 건물의 내진성능 평가법 개발 및 내진설계를 위한 기본적인 자료를 제공하는 것을 주목적으로, 각각 파괴형 부재의 강도와 변형능력 사이의 상관관계를 파악하여, 이것들의 비율이 건물 전체의 내진성능에 어떻게 영향을 미치는가를 비선형 지진응답해석을 실시 검토하여 최종적으로 극취성 전단 휨파괴형 수평저항시스템으로 구성된 저층 RC 건물의 요구 내력 스펙트럼을 제안하였다. 본 연구에서 제안된 요구 내력은 특정 지역에서 요구하는 지진수준에 대하여 지진발생시 특정 연성비 이내로 머물게 하는 하한내력의 범위를 파악할 수 있으므로 요구 내력 스펙트럼은 내진성능 평가 및 내진설계의 기본적인 자료로서 활용 가능하다고 판단된다.

Fragility analysis of R/C frame buildings based on different types of hysteretic model

  • Borekci, Muzaffer;Kircil, Murat S.
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.795-812
    • /
    • 2011
  • Estimation of damage probability of buildings under a future earthquake is an essential issue to ensure the seismic reliability. Fragility curves are useful tools for showing the probability of structural damage due to earthquakes as a function of ground motion indices. The purpose of this study is to compare the damage probability of R/C buildings with low and high level of strength and ductility through fragility analysis. Two different types of sample buildings have been considered which represent the building types mentioned above. The first one was designed according to TEC-2007 and the latter was designed according to TEC-1975. The pushover curves of sample buildings were obtained via pushover analyses. Using 60 ground motion records, nonlinear time-history analyses of equivalent single degree of freedom systems were performed using bilinear hysteretic model and peak-oriented hysteretic model with stiffness - strength deterioration for each scaled elastic spectral displacement. The damage measure is maximum inter-story drift ratio and each performance level considered in this study has an assumed limit value of damage measure. Discrete damage probabilities were calculated using statistical methods for each considered performance level and elastic spectral displacement. Consequently, continuous fragility curves have been constructed based on the lognormal distribution assumption. Furthermore, the effect of hysteresis model parameters on the damage probability is investigated.

Response modification factor of suspended zipper braced frames

  • Abdollahzadeh, Gholamreza;Abbasi, Mehdi
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.165-185
    • /
    • 2015
  • The suspended zipper bracing system is suggested to reduce the flaws of ordinary zipper braced and concentric inverted V braced frames. In the design procedure of suspended zipper bracing systems, columns and top story truss elements are strengthened. This bracing system show different performances and characteristics compared with inverted V braced and ordinary zipper frames. As a result, a different response modification factor for suspend zipper frames is needed. In this research paper, the response modification factor of suspended zipper frames was obtained using the incremental dynamic analysis. Suspended zipper braced frames with different stories and bay lengths were selected to be representations of the design space. To analyze the frames, a number of models were constructed and calibrated using experimental data. These archetype models were subjected to 44 earthquake records of the FEMA-P695 project data set. The incremental dynamic analysis and elastic dynamic analysis were carried out to determine the yield base shear value and elastic base shear value of archetype models using the OpenSEES software. The seismic response modification factor for each frame was calculated separately and the values of 9.5 and 13.6 were recommended for ultimate limit state and allowable stress design methods, respectively.

Evaluation of seismic criteria of built-up special concentrically braced frames

  • Izadi, Amin;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.23-37
    • /
    • 2018
  • In this paper, seismic provisions related to built-up special concentrically braced frames (BSCBFs) are investigated under cyclic loading using non-linear finite element analysis of a single-bay single-story frame. These braces, which contain double angle and double channel brace sections, are considered in two types of single diagonal and X-braced frames. The results of this study show that current seismic provisions such as observing the 0.4 ratio for slenderness ratio of individual elements between stitch connectors are conservative in BSCBFs, and can be increased according to the type of braces. Furthermore, such increments will lead to decreasing or remaining the current middle protected zone requirements of each BSCBFs. Failure results of BSCBFs, which are related to the plastic equivalent strain growth of members and ductility capacity of the models, show that the behaviors of double channel back-to-back diagonal braces are more desirable than those of similar face-to-face ones. Also, for double angle diagonal braces, results show that the failure of back-to-back BSCBFs occurs faster in comparison with face-to-face similar braces. In X-braced frames, cyclic and failure behaviors of built-up face-to-face models are more desirable than similar back-to-back braces in general.