• Title/Summary/Keyword: Story drift

Search Result 418, Processing Time 0.026 seconds

Development of Capacity Spectrum Method for Shear Building to Estimate the Maximum Story Drift (전단빌딩의 최대 층간변위를 예측하기 위한 역량스펙트럼법 개발)

  • Kim, Sun-Pil;Kim, Doo-Kie;Kwak, Hyo-Gyoung;Ko, Sung-Hyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.255-264
    • /
    • 2007
  • In the current domestic and overseas standards concerning seismic design, especially on the capacity & demand spectra in the multi-story building, failure is caused more by story drift than by displacement; and the existing capacity spectrum method (CSM) does not make a close estimate of story drift because response is derived using displacement. Therefore, this paper proposes an improved CSM to estimate story drift and its direct effect on the collapse of structures, yet still maintaining the same advantage and convenience of the existing CSM about a most basic model of multi-story building: shear building. To establish its reliability, the proposed method is applied to an example model and results are then compared with those obtained through nonlinear time-history analysis.

3-Dimensional Inelastic Behavior of Standard School Building with Various Hysteresis Models (표준학교건물의 3차원 비탄성거동에 대한 이력모델의 영향)

  • Yoon, Tae Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2917-2923
    • /
    • 2015
  • The three dimensional inelastic response characteristics of the standard school buildings depending on hysteresis models are reviewed. Three artificial earthquake records in accordance with KBC(Korea Building Code) are used and the inelastic response characteristics such as story shear force, story drift ratio, story displacement, hinge distribution state are reviewed with four hysteresis models. As results, story shear force is increased by maximum 27% and story drift ratio is increased by maximum 30% according to hysteresis models. Modified Takeda Model shows maximum story shear and story drift raio in longitudinal and short direction, expecting higher safety. Story shear shows minimum value with Clough Model in both directions and story drift ratio shows minimum with Takeda model in longitudinal and with Clough model in short direction, so these models are expected to decrease the safety ratio.

Dependency of COD on ground motion intensity and stiffness distribution

  • Aschheim, Mark;Maurer, Edwin;Browning, JoAnn
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.425-438
    • /
    • 2007
  • Large changes in stiffness associated with cracking and yielding of reinforced concrete sections may be expected to occur during the dynamic response of reinforced concrete frames to earthquake ground shaking. These changes in stiffness in stories that experience cracking might be expected to cause relatively large peak interstory drift ratios. If so, accounting for such changes would add complexity to seismic design procedures. This study evaluates changes in an index parameter to establish whether this effect is significant. The index, known as the coefficient of distortion (COD), is defined as the ratio of peak interstory drift ratio and peak roof drift ratio. The sensitivity of the COD is evaluated statistically for five- and nine-story reinforced concrete frames having either uniform story heights or a tall first story. A suite of ten ground motion records was used; this suite was scaled to five intensity levels to cause varied degrees of damage to the concrete frame elements. Ground motion intensity was found to cause relatively small changes in mean CODs; the changes were most pronounced for changes in suite scale factor from 0.5 to 1 and from 1 to 4. While these changes were statistically significant in several cases, the magnitude of the change was sufficiently small that values of COD may be suggested for use in preliminary design that are independent of shaking intensity. Consequently, design limits on interstory drift ratio may be implemented by limiting the peak roof drift in preliminary design.

Story Drift of a Frame with Column Flange Bolted-Beam Web Welded Double Angle Connections (더블앵글로 접합된 골조의 수평처짐)

  • Yang, Jae-Guen;Kim, Ho-Keun;Kim, Ki-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.95-103
    • /
    • 2003
  • Frame is one of the most commonly used structural systems for the resistance of applied loads. Many researchers have recently conducted their studies to investigate the effect of several parameters such as the connection flexibility, boundary condition of each support, beam-to-column stiffness ratio. These parameters play important roles on the characteristic behavior of frames. A simplified spring model is proposed to obtain the story drifts of frames with various beam-to-column connection stiffnesses in this research. A point bracing system with adequate spring stiffness is also suggested to establish the relationship between the applied load and the resisting translational spring stiffness within the limit state of story drift.

  • PDF

Simplified Analytical Model for a Steel Frame with Double Angle Connections (더블앵글 접합부를 사용한 철골조의 단순해석 모델)

  • Yang, Jae-Guen;Lee, Gil-Young;Park, Jeong-Suk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.45-54
    • /
    • 2006
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of connection flexibility, support conditions, and beam-to-column stiffness ratio on the story drift of a frame. Based on the results of these studies, several design guides have been proposed. This research has been conducted to predict the actual behavior of a double angle connection, and to establish its effect on the story drift and the maximum allowable load of a steel frame. For these purposes, several experimental tests were conducted and a simplified analytical model was proposed. This simplified analytical model consists of four spring elements as well as a column member. In addition, a point bracing system was proposed to control the excessive story drift of an unbraced steel frame.

  • PDF

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

Pushover Tests of 1 : 5 Scale 3-Story Reinforced Concrete Frames (1 : 5 축소 3층 철근콘크리트 골조의 횡방향 가력실험)

  • 이한선;우성우;허윤섭;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.529-536
    • /
    • 1999
  • The objective of the research stated herein is to observe th elastic and inelastic behaviors and ultimate capacity of 1 : 5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames without and with infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained to be an inverted triangle by using the whiffle tree. From the results of tests, the relations between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry are investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry are compared.

  • PDF

Pushover Tests of 1:5 Scale 3-Story Reinforced Concrete Frames

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup;Seon, Jin-Gyu
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.165-174
    • /
    • 1999
  • The objective of the research stated herein is to observe the elastic and inelastic behaviors and ultimate capacity of 1:5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames with and without infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained by an inverted triang1e by using the whiffle tree. From the test results, the relation ships between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry were investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry were compared.

  • PDF