• Title/Summary/Keyword: Storm runoff water

Search Result 334, Processing Time 0.035 seconds

Hydraulic and hydrologic performance evaluation of low impact development technology

  • Yano, Kimberly Ann;Geronimo, Franz Kevin;Reyes, Nash Jett;Choe, Hye-Seon;Jeon, Min-Su;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.325-325
    • /
    • 2020
  • Low impact development (LID) is a widely used technology that aims to reduce the peak flow volume and amount of pollutants in stormwater runoff while introducing physicochemical, biological or a combination of both mechanisms in order to improve water quality. This research aimed to determine the effect of hydrologic factors in removing the pollutants on stormwater runoff by an LID facility. Monitored storm events from 2010-2018 were analysed to evaluate the hydraulic and hydrological performance of a small constructed wetland (SCW). Standard methods for the examination water and wastewater were employed to assess the water quality of the collected samples (APHA et al, 1992). Primary hydrologic data were obtained from the Korea Meteorological Administration. The recorded average rainfall intensity and antecedent dry days (ADD) of SCW were 5.26 mm/hr and 7 days respectively. During the highest rainfall event (27 mm/hr), the removal efficiency of SCW for all the pollutants was ranging from 67% to 91%. While on the lowest rainfall event (0.7 mm/hr), the removal efficiency was ranging from -36% to 62%. Rainfall intensity has a significant effect to the removal efficiencies of each facility due to its dilution factor. In addition to that, there was no significant correlation of ADD to the mean concentrations of pollutants. Generally, stormwater runoff contains significant amount of pollutants that can cause harmful effects to the environment if not treated. Also, the component of this LID facility such as pre-treatment zone, media filters and vegetation contributed to the effectivity of the LID facilities in reducing the amounts of pollutants present in stormwater runof.

  • PDF

A Study on urban runoff by deter ministic simulation techniques. (확정론적 모의기법에 의한 도시유출 해석에 관한 연구)

  • 이은영;강관원
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.37-47
    • /
    • 1982
  • In the past, the design flow of the urban storm drainage systems has been used largely on a basis of empirical and experience, and the rational formula one of empirical method has been widely used for our country, as well as world wide. But the empirical method has insufficient factor because minimal consideration is given to the relationship of the parameters in the equation to the processes being considered, and considerable use of experience and judgment in setting values to the coefficients in the equation is made. The postcomputer era of hydrology has brought an acceleration development of mathematical methods, thus mathematical models are methods which will greatly increase our understanding in hydrology. On this study, a simple mathematical model of urban presented by British Road Research Laboratory is tested on urban watersheds in Ju An Ju Gong Apartment. The basin is located in Kan Seog Dong, Inchon. The model produces a runoff hydrograph by applying rain all to only the directly connected impervious area of the basin. To apply this model the basin is divided into contributing areas or subbasins. With this information the time area for contributing is derived. The rainfall hyetograph to design storm for the basin flow has been obtained by determination of total rainfall and the temporal distribution of that rainfall determined on the basis of Huff's method form historical rainfall data of the basin. The inflows from several subbaisns are successively routed down the network of reaches from the upstream end to the outlet. A simple storage routing technique is used which involves the use of the Manning equation to compute the stage discharge curve for the cross-section in question. To apply the model to a basin, the pattern of impervious areas must be known in detail, as well as the slopes and sizes of all surface and subsurface drains.

  • PDF

Washoff Characteristics of Metal Pollutants in Highways (고속도로 노면유출수의 중금속 유출 특성 및 상관성)

  • Lee, Eun-Je;Ko, Seok-Oh;Kang, Hee-Man;Lee, Joo-Kwang;Lim, Kyeong-Ho;Lee, Byung-Sik;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.128-133
    • /
    • 2006
  • The paved areas in nonpoint source are highly polluted landuses because of high imperviousness and high pollutant mass emissions from vehicle activities. Particularly, the metal pollutants are a big issue in the paved area. It is usually washed-off during storms by adsorbing on sediments or soluble status. Therefore, this research was achieved for understanding the characteristics of metal pollutants in stormwater runoff in highways. Five monitoring sites were equipped with an automatic rainfall gage and an automatic flow meter. This manuscripts will summarize the washoff characteristics of metal pollutants and its concentration changes during storms. Usually first flush phenomenon was observed for all of the storm events and visibly confirmed with hydro- and polluto-graphs. Also it was coincided with the tendency of particulates and organic matters. The decrease rate per total reduced amount for metals during initial 30-min storm duration was obtained on 80%. The result may be able to use for determining the economical treatment criteria for stormwater runoff in highways.

PREDICTION OF COMBINED SEWER OVERFLOWS CHARACTERIZED BY RUNOFF

  • Seo, Jeong-Mi;Cho, Yong-Kyun;Yu, Myong-Jin;Ahn, Seoung-Koo;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.62-70
    • /
    • 2005
  • Pollution loading of Combined Sewer Overflows (CSOs) is frequently over the capacity of a wastewater treatment plant (WWTP) receiving the water. The objectives of this study are to investigate water quality of CSOs in Anmyun-ueup, Tean province and to apply Storm Water Management Model to predict flow rate and water quality of the CSOs. The capacity of a local WWTP was also estimated according to rainfall duration and intensity. Eleven water quality parameters were analyzed to characterize overflows. SWMM model was applied to predict the flow rate and pollutant load of CSOs during rain event. Overall, profile of the flow and pollutant load predicted by the model well followed the observed data. Based on model prediction and observed data, CSOs frequently occurs in the study area, even with light precipitation or short rainfall duration. Model analysis also indicated that the local WWTP’s capacity was short to cover the CSOs.

Characteristics of Pollutant Washed-off from Highways with Storm Runoff Duration (아스팔트 포장 고속도로의 강우 지속시간별 오염물질 유출 경향)

  • Kim Lee-Hyun;Lee Eun-Ju;Ko Seok-Oh;Kang Hee-Man
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.99-106
    • /
    • 2006
  • During the dry periods, many types of pollutant are accumulating on the paved surface by vehicle activities. Particularly, the highways are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicles. The accumulated pollutants in highways are washed-off during a rainfall event and are highly contributing on water quality of receiving water bodies. The stormwater runoff from the highways are containing various pollutants such as metals, oil & grease and toxic chemicals originated from vehicles. Therefore, this research is performed to find pollutant characteristics in the magnitude of statistical pollutant concentrations during storm periods. During the monitoring periods, the first-flush phenomenon is visibly occurred on most storm events, which is confirmed from hydro- and pollute-graphs. The 95% confidence intervals of washed-off pollutant concentration are ranged to 154.7-257.1 mg/L for 755,138.9-197.6 mg/L for COD, 3.5-6.4 mg/L for oil & grease, 6.3-9.2 mg/L for TN and 2.3-3.31 mg/L for TP. The first flush effect is mostly occurred within initial 30 min of storm duration.

  • PDF

Frequency Runoff Analysis by Storm Type using GIS and NRCS Method (GIS와 NRCS방법을 이용한 호우형태에 따른 빈도별 유출 분석)

  • Yeon, Gyu-Bang;Jung, Seung-Kwon;Kim, Joo-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.119-131
    • /
    • 2003
  • Rainfall-runoff process is under the control of hydrologic parameters having temporal and spatial variety. Accordingly, it is difficult to efficiently deal them since many parameters and various information are required to perform hydrologic simulation. So the purposes of this study is to estimate the runoff volume by frequency using GIS techniques and NRCS method. The analysis of frequency rainfall is analyzed using FARD 2002 program and the result of goodness of fit test show that Log-pearson type III is suitable distribute type for the applied area. TOPAZ program used for the analysis of DEM data examining into geological characteristic. NRCS curve numbers estimated using landuse map and soil map for the estimation of effective rain fall in the basin. The storm Type II and Type III were used as the type for the application of NRCS. The result of application show that the runoff volumes above 80 years frequency in return period have similar patterns regardless of Type II and Type III. In addition, the results of comparison with runoff volumes by frequency in the report of river improvement master plan show that it have similar volumes as the relative errors for them of 80, 100 years frequency are each 7.65%, 5.33%.

  • PDF

Pollutants Characteristics of Surface Runoff from the Industrial Complex (산업공단에서의 지표유출수 오염물질 특성)

  • Kim, Youn-Kwon;Shin, Eung-Bai;Lee, Doo-Jin;Pae, Yo-sop;Yoon, Hyun-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.689-698
    • /
    • 2000
  • The quality of stormwater runoff has been a major concern in water quality preservation. Characteristics of heavy metals and conventional pollutants in surface runoff from industrial complex, during the first flush, were not completely understood, Generally, separated sewer system is known for their water quality with untreated wastewater during storm events. In this study, the quality and characteristics of surface runoff from the industrial complex were investigated. The target area in the industrial complex catchment was divided 4 sub-areas, and the quality of stormwater runoff from the selected drainage areas was investigated using a grab sampling method. The petro-chemical industry and the junkyard discharged relatively high concentration of conventional pollutants, such as BOD, COD, SS, and TN through the first flush runoff samples. On the other hand, a higher level of heavy metals was found in the first flush runoff from the metal-mechanical industry and the scrap storage yard. For metals, Fe, Zn and Cu were the most prevalent species found in the first flush runoff from all sites for every surface runoff samples, while Pb, As, Cd, Cr and Ni were the least prevalent species and Hg was not found in any sample at any site. These results suggest that the nature of pollutants in surface runoff from the industrial complex was related to the type of industry, and the concentration of pollutants was determinated by the degree of exposed pollutant sources and the characteristic of rainfall events at the sites.

  • PDF

Real-time Flood Forecasting Model Based on the Condition of Soil Moisture in the Watershed (유역토양수분 추적에 의한 실시간 홍수예측모형)

  • 김태철;박승기;문종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.81-89
    • /
    • 1995
  • One of the most difficult problem to estimate the flood inflow is how to understand the effective rainfall. The effective rainfall is absolutely influenced by the condition of soil moisture in the watershed just before the storm event. DAWAST model developed to simulate the daily streamflow considering the meteologic and geographic characteristics in the Korean watersheds was applied to understand the soil moisture and estimate the effective rainfall rather accurately through the daily water balance in the watershed. From this soil moisture and effective rainfall, concentration time, dimensionless hydrograph, and addition of baseflow, the rainfall-runoff model for flood flow was developed by converting the concept of long-term runoff into short-term runoff. And, real-time flood forecasting model was also developed to forecast the flood-inflow hydrograph to the river and reservoir, and called RETFLO model. According to the model verification, RETFLO model can be practically applied to the medium and small river and reservoir to forecast the flood hydrograph with peak discharge, peak time, and volume. Consequently, flood forecasting and warning system in the river and the reservoir can be greatly improved by using personal computer.

  • PDF

Effect of Stormwater Runoff on Combined Sewer Overflows in Korea

  • Kim, Lee-Hyung;Kim, Il-Kyu;Lee, Young-Sin;Lim, Kyeong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.107-113
    • /
    • 2007
  • The Kuem-River, one of the largest rivers in Korea, is the primary water source for more than 4 million people in Kongju city and surrounding area. To study the effect of stormwater runoff to CSOs, twelve monitoring sites were selected in two large cities (City of Kongju and City of Buyeo) near the Kuem-River. Monitoring was reformed by collecting grab samples, measuring flow rates during dry and wet seasons during over two rainy seasons. Generally the flow rate of wastewater in combined sewers was rapidly decreased after 23:00 P.M. and gradually increased from 06:30 A.M. in all sites during the dry season. The concentrations of pollutant increase approximately 5 to 7 fold for TSS and 1.5 to 2.5 fold for BOD during the rainy season. Monitoring and statistical analysis show that the groundwater contributes on sewage volume increase (average 25-45% more) during dry periods and the stormwater runoff contributes approximately 51-72% increase during rainy periods. Generally the concentrations of combined sewage were more polluted during the first flush period than after the first flush during a storm event.

Analyses of the Environmental Characteristics of Ponds in Golf Courses for Ecological Management (골프장 연못의 생태적 관리를 위한 환경특성 분석)

  • Ahn Deug-Soo;Kim Chang-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.51-77
    • /
    • 2006
  • Pond management is a critical part of overall golf course management, both during growth and maintenance modes of turf care. This study investigated 48 ponds in nine 18- or 27-hole golf courses to analyze the environmental characteristics of ponds. The research process had three phases: (1) inventory and analysis of grading plans and drainage plans, (2) field verification and interviews with greenskeepers, and (3) analyses of water quality and statistics. All data were collected from May to August in 2004. The results of this study can be summarized as follows: 1. It is desirable to site a golf course in a small watershed with high watershed eccentricity to control storm water runoff efficiently and to minimize soil erosion during construction. 2. The siting and size of a pond should be determined through a land-use analysis of the watershed for the purpose of ecological management. The bigger the forest-to-golf course ratio, the better the water quality will be. 3. The size and capacity of each individual ponds varied and there were many somewhat longish rather than round ponds. 4. There were many differences among golf courses in naturalness of the ponds, and the correlation between naturalness and area of aquatic plants was very high. 5. Analyses of pond water quality indicated that the degrees of Dissolved Oxygen, Chemical Oxygen Demanded and Suspended Solids were relatively low values but Total Phosphorus and Total Nitrogen were too high. Therefore a systematic approach is needed to solve e problem. Pesticide residues were not detected in all ponds. 6. Water depth and area of hydrophyte should be considered when designing an ecological pond. 7. All ponds used storm water as a main source of water supply and added underground water. Aquatic plants and physical methods such as water aeration and spray fountains were the main choices for maintaining a healthy aquatic environment.