• Title/Summary/Keyword: Storm runoff water

검색결과 334건 처리시간 0.029초

A Study on Hydrologic Analysis and Some Effects of Urbanization on Design Flow of Urban Storm Drainage Systems (1) (도시 하수도망의 수문학적인 평가와 설계확률유량의 점대화 성향에 관한 연구(제1보))

  • 강관원;서병하;윤용남
    • Water for future
    • /
    • 제14권4호
    • /
    • pp.27-34
    • /
    • 1981
  • The design flow of the urban strom drainage systems has been assessed largely on a basis of empirical relations between rainfall and runoff, and the rational formula has been widely used for the cities in our country. In order to estimate it more accurately, the urban runoff simulation model based on the RRl method has been developed and applied to the sample basin in this study. The rainfall hyetograph of the design stromfor the design flow has been obtained by the determination of the total rainfall and the temporal distributions of that rainfall. The total rainfall has been assessed from the empirical formula of rainfall intensity and the temporal distribution of that rainfall determined on the basis of Huff's method from the historical rainfall data of the basin. The virtual inflow hydrograph to each inlet of the basin has been constructed by computing the series of discharges in each time increment, using design strom hyetograph and time-area diagram. The actual runoff hydrograph at the basin outlet has been computed from the virtual inflow hydrographs by developing a relations between discharge and storage for the watershed. The discharge data for verification of the simulated runoff hydrograph are not available in the sample basin and so the sensitivity analysis of the simulation model has not been possible. The peak discharge for the design of drainage systems has been estimated from the computed runoff hydrograph at the basin outlet and compared to thatl obtained form the rational formula.

  • PDF

Critical Duration of Design Rainfall for the Design of Storm Sewer in Seoul (우수관거 설계를 위한 계획강우의 임계지속기간 -서울 지역을 중심으로-)

  • 이재준;이정식;전병호;이종태
    • Water for future
    • /
    • 제26권2호
    • /
    • pp.49-57
    • /
    • 1993
  • A hydrological method is performed to determine the critical duration of design rainfall for the design of storm sewer in Seoul. To seize the effect of the duration and the temporal distribution of the rainfall to the peak discharge of the storm sewer, the Huff's quartile method is used as a temporal pattern for the design rainfall of any durations (9 cases for 20-240 min.) with 10 years return period. The critical duration of design rainfall is determined as the duration which maximizes the peak discharge. This study is applied to 18 urban drainage systems in Seoul. The ILLUDAS model is applied to runoff analysis, and the result shows that the duration which maximizes peak discharge is 30, 60 minutes generally. The relation diagram between peak discharge for the critical duration and watershed area is prepared for the design of storm sewer.

  • PDF

The Runoff Characteristics due to Heavy Rainfall in Mountainous River (산지하천의 집중강우에 따른 유출특성에 관한 연구)

  • Kang, Sang-Hyeok;Choi, Jong-In;Park, Jong-Young
    • Spatial Information Research
    • /
    • 제15권2호
    • /
    • pp.159-167
    • /
    • 2007
  • In this study, we investigated the application of extending the Huff's method to design discharge being used at present up to the event of concentrated rainfall. As our field study site, we selected Odae Cheon basin in Pheongchang, which was affected by concentrated rainfall in July 2006. Actual concentrated rainfall and design rainfall derived from the Huff's method were used to calculate the discharge and storm water levels, which were compared with the directly measured water-level marks of storm discharges. The results showed that the peak storm discharge from the torrential rainfall was twice higher than the design rainfall. The short term discharges from concentrated rainfall closely corresponded to the rainfall discharges of 150 years storm frequency.

  • PDF

Study of Installation of Sediment Trap Drain Channel to Reduce Soil Erosion from Storm Water Runoff (침사기능 콘크리트 배수로의 유사 유출 저감에 관한 연구)

  • Shin, Hyun-Jun;Won, Chul-Hee;Choi, Yong-Hun;Kim, Tae-Yoo;Choi, Jung-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제52권6호
    • /
    • pp.95-100
    • /
    • 2010
  • Researchers developed Sediment Trap Drain Channel (STDC) as a solution of the reduction of soil erosion and muddy runoff from a alpine field. The STDC is the one that can take a role of grit chamber by installing the shield made of woods in the concrete channel. The study was conducted 8 kinds of stages according to the amount of soil loss and the inflow. Evaluation factors were ss concentration, turbidity and reduced soil. The results of study showed lessness of ss concentration and turbidity from the lower spot than the upper spot. The average reduction rate of ss concentration was 74 % and the average reduction rate of turbidity was 62 %. It was turned out that the performance related soil loss and muddy runoff of the STDC is effective. The governance was needed to expect the effectiveness of the STDC.

Estimating Pollutant Loading Using Remote Sensing and GIS-AGNPS model (RS와 GIS-AGNPS 모형을 이용한 소유역에서의 비점원오염부하량 추정)

  • 강문성;박승우;전종안
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제45권1호
    • /
    • pp.102-114
    • /
    • 2003
  • The objectives of the paper are to evaluate cell based pollutant loadings for different storm events, to monitor the hydrology and water quality of the Baran HP#6 watershed, and to validate AGNPS with the field data. Simplification was made to AGNPS in estimating storm erosivity factors from a triangular rainfall distribution. GIS-AGNPS interface model consists of three subsystems; the input data processor based on a geographic information system. the models. and the post processor Land use patten at the tested watershed was classified from the Landsat TM data using the artificial neural network model that adopts an error back propagation algorithm. AGNPS model parameters were obtained from the GIS databases, and additional parameters calibrated with field data. It was then tested with ungauged conditions. The simulated runoff was reasonably in good agreement as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

Assessment of Feasibility of Rainfall-Runoff Simulation Using SRTM-DEM Based on SWMM (SWMM 기반 SRTM-DEM을 활용한 강우-유출 모의 가능성 평가)

  • Mirae Kim;Junsuk Kang
    • Journal of Environmental Science International
    • /
    • 제33권7호
    • /
    • pp.443-452
    • /
    • 2024
  • The recent increase in impermeable surfaces due to urbanization and the occurrence of concentrated heavy rainfall events caused by climate change have led to an increase in urban flooding. To predict and prepare for flood damage, a convenient and highly accurate simulation of rainfall-runoff based on geospatial information is essential. In this study, the storm water management model (SWMM) was applied to simulate rainfall runoff in the Bangbae-dong area of Seoul, using two sets of topographical data: The conventional topographic digital elevation model (TOPO-DEM) and the proposed shuttle radar topography mission (SRTM)-DEM. To evaluate the applicability of the SRTM-DEM for rainfall-runoff modeling, two DEMs were constructed for the study area, and rainfall-runoff simulations were performed. The construction of the terrain data for the study area generally reflected the topographical characteristics of the area. Quantitative evaluation of the rainfall-runoff simulation results indicated that the outcomes were similar to those obtained using the existing TOPO-DEM. Based on the results of this study, we propose the use of SRTM-DEM, a more convenient terrain data, in rainfall-runoff studies, rather than asserting the superiority of a specific geospatial data.

Characterization of Stormwater Runoff according to Sewer System in Paldang Watershed (하수도 시스템 유무에 따른 강우유출특성 분석 - 팔당호 유역을 대상으로)

  • Kang, Dong-Han;Sajjad, Raja Umer;Kim, Keuktae;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • 제32권2호
    • /
    • pp.142-148
    • /
    • 2016
  • The characterization of stormwater runoff from mix land-use catchments with an inadequate sewer network is a challenge. This study focused on characterizing stormwater runoff from the Paldang watershed area based on land-use type and sewer system coverage. A total of 76 sites were monitored during wet weather from seven different counties within Paldang watershed. Public sewer system (PSS) was installed at 48 sites, while 28 sites had no or individual sewer system (ISS) coverage. The results indicated that the sites included in the ISS group with higher forest and paddy land-use percentage exhibit higher values of average event mean concentrations (EMCs) and first flush intensity for suspended solids (SS), total nitrogen (TN), and total phosphorous (TP). In addition, upgrading runoff interception system can capture 59 % of the TP load in the first 43% of runoff within these sites. Similarly, rainfall depth and storm duration showed a positive correlation (R > 0.6) with nutrient loads within ISS group sites, as compared to PSS group. Therefore, these sites are likely to contribute higher TP and TN loads during heavier storm events and should be selected as priority management areas to combat the problem of eutrophication in Paldang reservoir.

Parameter estimations to improve urban planning area runoff prediction accuracy using Stormwater Management Model (SWMM) (SWMM을 이용한 도시계획지역 유출량 예측 정확도 향상을 위한 매개변수 산정)

  • Koo, Young Min;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • 제50권5호
    • /
    • pp.303-313
    • /
    • 2017
  • In environmental impact assessments for large urban development projects, the Korean government requires analysis of stormwater runoff before, during and after the projects. Though hydrological models are widely used to analyze and prepare for surface runoff during storm events, accuracy of the predicted results have been in question due to limited amount of field data for model calibrations. Intensive field measurements have been made for storm events between July 2015 and July 2016 at a sub-basin of the Gwanpyung-cheon, Daejeon, Republic of Korea using an automatic monitoring system and also additional manual measurements. Continuous precipitation and surface runoff data used for utilization of SWMM model to predict surface runoff during storm events with improved accuracy. The optimal values for Manning's roughness coefficient and values for depression storage were estimated for pervious and impervious surfaces using three representative infiltration methods; the Curve Number Methods, the Horton's Method and the Green-Ampt Methods. The results of the research is expected to be used more efficiently for urban development projects in Korea.

An Analysis of the water balance of Low Impact Development Techniques According to the Rainfall Types (강우 유형에 따른 저영향개발 기법별 물수지 분석)

  • Yoo, Sohyun;Lee, Dongkun;Kim, Hyomin;Cho, Youngchul
    • Journal of Environmental Impact Assessment
    • /
    • 제24권2호
    • /
    • pp.163-174
    • /
    • 2015
  • Urbanization caused various environmental problems like destruction of natural water cycle and increased urban flood. To solve these problems, LID(Low Impact Development) deserves attention. The main objective of LID is to restore the water circulation to the state before the development. In the previous studies about the LID, the runoff reduction effect is mainly discussed and the effects of each techniques of LID depending on rainfall types have not fully investigated. The objective of this research is to evaluate the effect of LID using the quantitative simulation of rainwater runoff as well as an amount of infiltration according to the rainfall and LID techniques. To evaluate the water circulation of LID on the development area, new land development areas of Hanam in South Korea is decided as the study site. In this research, hydrological model named STORM is used for the simulation of water balance associated with LID. Rainfall types are separated into two categories based on the rainfall intensity. And simulated LID techniques are green roof, permeable pavement and swale. Results of this research indicate that LID is effective on improvement of water balance in case of the low intensity rainfall event rather than the extreme event. The most effective LID technique is permeable pavement in case of the low intensity rainfall event and swale is effective in case of the high intensity rainfall event. The results of this study could be used as a reference when the spatial plan is made considering the water circulation.

Prediction of Lane Flooding on a Model Site for Rainfall Safety of Rubber-tired Tram (바이모달 트램 모의운행지역에서의 강우에 대한 노선침수 예측)

  • Park, Young-Kon;Yoon, Hee-Taek;Lim, Kyoung-Jae;Kim, Jong-Gun;Park, Youn-Shik;Kim, Tae-Hee
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1209-1212
    • /
    • 2007
  • Urban flooding with surcharges in sewer system was investigated because of unexpected torrential storm events these days, causing significant amounts of human and economic damages. Although there are limitations in forecasting and preventing natural disasters, integrated urban flooding management system using the SWMM(Storm Water Management Model) engine and Web technology will be an effective tool in securing safety in operating rubber-tired transportation system. In this study, the study area, located in Chuncheon, Kangwon province, was selected to evaluate the applicability of the SWMM model in forecasting urban flooding due to surcharges in sewer system The catchment are 21.10 ha in size and the average slope is 2% in lower flat areas. Information of subcatchment, conjunctions, and conduits was used as the SWMM interface to model surface runoff generation, water distribution through the sewer system and amount of water overflow. Through this study, the applicability of the SWMM for urban flooding forecasting was investigated and probability distribution of storm events module was developed to facilitate urban flooding prediction with forecasted rainfall amounts. In addition, this result can be used to the establishment of disaster management system for rainfall safety of rubber-tired tram in the future.

  • PDF