• Title/Summary/Keyword: Storm runoff

Search Result 414, Processing Time 0.027 seconds

Apply Low Impact Development for the reduction of runoff using SWMM model (SWMM 모형을 이용한 서암동지구에서의 유출수 저감을 위한 저영향개발기법 적용)

  • Woo, Won Hee;Lee, Tae Woo;Park, Youn Shik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.218-218
    • /
    • 2017
  • Urbanization increases impervious area and decreases the water quantity infiltrating into soil layers. This leads to lack of ground water, it could be possibly problematic for agricultural water for crop growth in lower basins, reducing not only ground water but also streamflow quantities. One such approach to minimize the impact of urbanization is to apply low impact developments (LIDs). LIDs are to decrease the percentage of impervious area so that infiltration rate is increased, there is a need to simulate the LIDs prior to the construction. LIDs in Storm Water Management Model (SWMM) are limited to be seven types, however it is often required to simulate LIDs more than seven types. Therefore an approach to apply eleven LIDs is provided in the study, updating the model parameters. A scenario containing eleven LIDs was given by the environmental decision makers, the effect of LIDs were simulated with the expected annual costs considering establishment and maintenance costs.

  • PDF

Urbanization and Quality of Stormwater Runoff: Remote Sensing Measurements of Land Cover in an Arid City

  • Kang, Min Jo;Mesev, Victor;Myint, Soe W.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.399-415
    • /
    • 2014
  • The intensity of stormwater runoff is particularly acute across cities located in arid climates. During flash floods loose sediment and pollutants are typically transported across sun-hardened surfaces contributing to widespread degradation of water quality. Rapid, dense urbanization exacerbates the problem by creating continuous areas of impervious surfaces, perforated only by a few green patches. Our work demonstrates how the latest techniques in remote sensing can be used to routinely measure urban land cover types, impervious cover, and vegetated areas. In addition, multiple regression models can then infer relationships between urban land use and land cover types with stormwater quality data, initially sampled at discrete monitoring sites, and then extrapolated annually across an arid city; in our case, the city of Phoenix in Arizona, USA. Results reveal that from 30 storm event samples, solids and heavy metal pollutants were found to be highly related with general impervious surfaces; in particular, with industrial and commercial land use types. Repercussions stemming from this work include support for public policies that advocate environmental sustainability and the more recent focus on urban livability. Also, advocacy for new urban construction and re-development that both steer away from vast unbroken impervious surfaces, in place of more fragmented landscapes that harmonize built and green spaces.

The Effect of Antecedent Moisture Conditions on the Contributions of Runoff Components to Stormflow in the Coniferous Forest Catchment

  • Choi, Hyung-Tae;Kim, Kyong-Ha;Lee, Choong-Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.755-761
    • /
    • 2010
  • This study analyzed water quality data from a coniferous forest catchment in order to quantify the contributions of runoff components to stormflow, and to understand the effects of antecedent moisture conditions within catchment on the contributions of runoff components. Hydrograph separation by the twocomponent mixing model analysis was used to partition stormflow discharge into pre-event and event components for total 10 events in 2005 and 2008. To simplify the analysis, this study used single geochemical tracer with Na+. The result shows that the average contributions of event water and pre-event water were 34.8% and 65.2% of total stormflow of all 10 events, respectively. The event water contributions for each event varied from 18.8% to 47.9%. As the results of correlation analysis between event water contributions versus some storm event characteristics, 10 day antecedent rainfall and 1 day antecedent streamflow are significantly correlated with event water contributions. These results can provide insight which will contribute to understand the importance of antecedent moisture conditions in the generation of event water, and be used basic information to stormflow generation process in forest catchment.

Real-time Flood Forecasting Model Based on the Condition of Soil Moisture in the Watershed (유역토양수분 추적에 의한 실시간 홍수예측모형)

  • 김태철;박승기;문종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.81-89
    • /
    • 1995
  • One of the most difficult problem to estimate the flood inflow is how to understand the effective rainfall. The effective rainfall is absolutely influenced by the condition of soil moisture in the watershed just before the storm event. DAWAST model developed to simulate the daily streamflow considering the meteologic and geographic characteristics in the Korean watersheds was applied to understand the soil moisture and estimate the effective rainfall rather accurately through the daily water balance in the watershed. From this soil moisture and effective rainfall, concentration time, dimensionless hydrograph, and addition of baseflow, the rainfall-runoff model for flood flow was developed by converting the concept of long-term runoff into short-term runoff. And, real-time flood forecasting model was also developed to forecast the flood-inflow hydrograph to the river and reservoir, and called RETFLO model. According to the model verification, RETFLO model can be practically applied to the medium and small river and reservoir to forecast the flood hydrograph with peak discharge, peak time, and volume. Consequently, flood forecasting and warning system in the river and the reservoir can be greatly improved by using personal computer.

  • PDF

Effect of Stormwater Runoff on Combined Sewer Overflows in Korea

  • Kim, Lee-Hyung;Kim, Il-Kyu;Lee, Young-Sin;Lim, Kyeong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.107-113
    • /
    • 2007
  • The Kuem-River, one of the largest rivers in Korea, is the primary water source for more than 4 million people in Kongju city and surrounding area. To study the effect of stormwater runoff to CSOs, twelve monitoring sites were selected in two large cities (City of Kongju and City of Buyeo) near the Kuem-River. Monitoring was reformed by collecting grab samples, measuring flow rates during dry and wet seasons during over two rainy seasons. Generally the flow rate of wastewater in combined sewers was rapidly decreased after 23:00 P.M. and gradually increased from 06:30 A.M. in all sites during the dry season. The concentrations of pollutant increase approximately 5 to 7 fold for TSS and 1.5 to 2.5 fold for BOD during the rainy season. Monitoring and statistical analysis show that the groundwater contributes on sewage volume increase (average 25-45% more) during dry periods and the stormwater runoff contributes approximately 51-72% increase during rainy periods. Generally the concentrations of combined sewage were more polluted during the first flush period than after the first flush during a storm event.

Washoff Characteristics and Correlation of Nonpoint pollutants in a Bridge Storm Runoff (교량 강우유출수내 비점오염물질의 유출특성 및 상관성)

  • Wee, Seung-Kyung;Kim, Lee-Hyung;Jung, Yong-Jun;Gil, Kyung-Ikt
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.378-382
    • /
    • 2008
  • During the dry periods, many types of pollutants are being accumulated on the paved surface by vehicle activities and the accumulated various pollutants are inflowing into the near watershed areas for the rainfall periods. Particularly, bridges are the centralized region to be the surface runoff of the stromwater due to the high ratio of the impermeable area. Also, the metals, toxic chemicals and sediments originated from bridges could be strongly influenced to the watershed areas during the runoff. Therefore, the present study is achieved to provide washoff characteristics and correlation from the bridge during rainfall periods. The result shows that the EMC ranges for 95% confidence intervals in a bridge land use are 10.12~128.09 mg/L for TSS, 6.07~21.15 mg/L for BOD, 2.10~6.70 mg/L for TN and 0.06~0.85 mg/L for TP.

Real-time Recursive Forecasting Model of Stochastic Rainfall-Runoff Relationship (추계학적 강우-유출관계의 실시간 순환예측모형)

  • 박상우;남선우
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.109-119
    • /
    • 1992
  • The purpose of this study is to develop real-time streamflow forecasting models in order to manage effectively the flood warning system and water resources during the storm. The stochastic system models of the rainfall-runoff process using in this study are constituted and applied the Recursive Least Square and the Instrumental Variable-Approximate Maximum Likelihood algorithm which can estimate recursively the optimal parameters of the model. Also, in order to improve the performance of streamflow forecasting, initial values of the model parameter and covariance matrix of parameter estimate errors were evaluated by using the observed historical data of the hourly rainfall-runoff, and the accuracy and applicability of the models developed in this study were examined by the analysis of the I-step ahead streamflow forecasts.

  • PDF

Determination of Event Mean Concentrations and Pollutant Loadings in Highway Storm Runoff (고속도로 강우 유출수내 오염물질의 EMC 및 부하량 원단위 산정)

  • Kim, Lee-Hyung;Kang, Joohyon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.631-640
    • /
    • 2004
  • This research was conducted to understand the magnitude and nature of the stormwater emissions with the goal of quantifying stormwater pollutant concentrations and mass emission rates of pollutants. Eight highway sites in Southern California area were monitored for three years with collecting of grab and flow-weighted composite samples, rainfall and runoff flow. Generally the EMCs cannot be determined by simple statistical averaging of measured pollutant concentrations because of random characteristics of runoff quality and quantity. Therefore, this manuscripts will show a new EMC determination method. The EMC ranges of 95% confidence intervals are 102.78-216.37mg/L for TSS, 104.53-251.79mg/L for COD, 5.42-10.58mg/L for oil & grease and 2.42-10.18mg/L for TKN. The ranges of washed-off mass loading are determined to $0.06g/m^2-17.27g/m^2$ for TSS and $0.1-3.23g/m^2$for COD.

도시소유역의 유출해석을 위한 수문모형의 개발과 응용 - Development and Applications of Hydrologic Model of Strom Sewer runoff at Small Urban Area

  • 이영대;박승우
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.329-340
    • /
    • 1990
  • The Paper presents the development and applications of physically-based urban runoff analysis model, URAM, which is capable of simulating sewer runoff hydrograhps and inundation conditions within a samll urban catchment. The model coniders three typical flow conditions of urban drainage networks, which are over-land flow, gutter flow, and conduit flow during a storm. Infiltration, retention storage and flow routing procedures are physically depicted in model. It was tested satisfactorily with the field data from a tested catchment having drainage area of 0.049k$m^2$. It was also applied to other urban areas and found to adequately simulate inundation areas and duration as observed during storms. The test results as well as model components are described in the paper.

  • PDF