• 제목/요약/키워드: Storm runoff

검색결과 413건 처리시간 0.03초

분포형 수문모형을 이용한 산림소유역의 홍수수문곡선의 추정 (Estimation of Storm Hydrographs in a Small Forest Watershed Using a Distributed Hydrological Model)

  • 이상호;우보명;임상준
    • 생태와환경
    • /
    • 제41권1호
    • /
    • pp.43-53
    • /
    • 2008
  • 본 연구의 목적은 분포형 수문모형인 TOPMODEL을 이용하여 산림유역의 홍수수문곡선을 추정하는 것이다. 이를 위하여 유역면적 58.3ha의 명성유역을 선정하였으며, 대상유역에 대하여 강우량과 유출량을 측정하였다. Monte Carlo기법을 이용하여 강우사상별로 최적의 매개 변수 조합을 구하고, 매개변수별 모의기간에 대한 평균값을 적용하여 매개변수를 결정하였다. 1997년에 측정된 6개의 강우-유출량 자료를 이용하여 매개변수 보정을 실시하였으며, $1998\sim1999$년에 측정된 8개의 강우-유출량 자료를 이용하여 모형의 검증을 실시하였다. 보정기간에 대한 유출량 추정 오차는 $-2.74\sim1.81%$의 범위를 보였으며, 모형 효율(E)은 평균 0.92이었다. 6개의 강우사상에 대하여 실측된 평균 첨두유량은 $0.324m^3\;s^{-1}$이었으며, 이에 대한 추정치는 $0.295m^3\;s^{-1}$로 모의되었다. 강우 사상별 첨두유량의 오차범위는 $-27.65\sim-1.13%$로 나타났으며, 이는 강우특성 및 선행강우조건에 영향을 받은 것으로 판단된다. 검증기간에 대하여 각 강우사상별 모형효율(E)의 평균값은 0.92로 나타났다. 첨두유량의 실측값은 평균적으로 $0.087m^3\;s^{-1}$이었으며, 추정된 첨두유량의 평균은 $0.090m^3\;s^{-1}$로 나타났다. 첨두시간은 보정기간에 대하여는 관측값과 모의값의 평균이 각각 18.3 hrs와 11.0 hrs이었으며, 검증기간에 대하여는 각각 16.6hrs와 13.5 hrs이었다.

장기유출 해석을 위한 유효우량 추정 (Estiation of Effective Rainall for Daily Streamfiow)

  • 김태철;안병기;박승기
    • 한국농공학회지
    • /
    • 제31권2호
    • /
    • pp.116-124
    • /
    • 1989
  • Based on the theory of runoff equation proposed by SCS, the actual storage capacity(Sa) as a modified retention paramater was introduced to estimate the effective rainfall for the daily streamfiow analysis. During a storm, the actual storage capacity is limited by either soil water storage or infiltration rate as precipitation increases. Therefore, it was assumed that Sa is dependent on the baseflow before storm runoff(Qb) corresponding to soil water storage and the total amount of precipitation(P) corresponding to infiltration rate of a watershed. Effective rainfalls (Direct run-offs) estimate4 from SCS equation using Sa were compared with observed effective rainfalls at 10 watersheds in Geum river watershed boundary. 1. Regression equation for Sa was supposed Sa=Co+C$_1$XP+C$_2$X Qb Regression coefficients were highly significant at the level of 0. 01 and R$^2$ were 0.57 to 0.73. 2. The adjustment of coefficient of initial abstraction was made according to the storm size. It was adjusted to 025 for 30mm or less, 0.23 for 30 to 80mm, 0.20 for 80 to 200mm, and 0.1 for 200mm or more. 3. Regression equations between estimated and observed effective rainfall showed that slopes were 0.857 to 1.029 and R$^2$ were 0.779 to 0.989,

  • PDF

유역 공간 강우 산정방법에 따른 VfloTM 분포형 강우-유출 모형의 매개변수 평가 - 금호강 동촌 유역을 대상으로 - (Parameter Estimation of VfloTM Distributed Rainfall-Runoff Model by Areal Rainfall Calculation Methods - For Dongchon Watershed of Geumho River -)

  • 김시수;정충길;박종윤;정성원;김성준
    • 한국농공학회논문집
    • /
    • 제55권1호
    • /
    • pp.9-15
    • /
    • 2013
  • This study is to evaluate the parameter behavior of VfloTM distributed rainfall-runoff model by applying 3 kinds of rainfall interpolation methods viz. Inverse Distance Weighting (IDW), Kriging (KRI), and Thiessen network (THI). For the 1,544 $km^2$ Dongcheon watershed of Nakdong river, the model was calibrated using 4 storm events in 2007 and 2009, and validated using 2 storm events in 2010. The model was calibrated with Nash-Sutcliffe model efficiency of 0.97 for IDW, 0.94 for KRI, and 0.95 for THI respectively. For the sensitive parameters, the saturated hydraulic conductivity ($K_{sat}$) for IDW, KRI, and THI were 0.33, 0.31, and 0.43 cm/hr, and the soil suction head at the wetting front (${\Psi}_f$) were 4.10, 3.96, and 5.19 cm $H_2O$ respectively. These parameters affected the infiltration process by the spatial distribution of antecedent moisture condition before a storm.

지표하 흐름을 고려한 개선된 TOPMODEL의 유출분석연구 (Runoff Analysis of Modified TOPMODEL with Subsurface Storm Flow Generation Mechanism)

  • 이학수;한지영;김경현;김상현
    • 한국수자원학회논문집
    • /
    • 제34권4호
    • /
    • pp.403-411
    • /
    • 2001
  • 본 연구에서는 지표하층과 암반층 사이의 지표하흐름을 기존 TOPMODEL의 구조에 연계시킨 수정 TOPMODEL의 국내 유역 적용성을 검증하였다. 지표하층에 존재하고 있는 대공극은 신속한 유출발생을 위한 수문경로를 제공하고 있으며, 수문감쇠곡선 분석을 위한 이중저류체계의 필요성을 의미한다. 설마천 유역을 대상으로 2개월간의 연속적인 유역수문거동을 모의한 결과 수정 TOPMODEL은 기존 TOPMODEL에 비해 유출발생과정을 모다 포괄적이고, 현실적으로 재현할 수 있는 것으로 밝혀졌다. Monte-Carlo 방법을 도입한 매개변수 산정결과도 수정 TOPMODEL의 경우가 물리적으로 타당한 것으로 밝혀졌다.

  • PDF

Application of Grid-based Kinematic Wave Storm Runoff Model

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Seok
    • 한국수자원학회논문집
    • /
    • 제33권S1호
    • /
    • pp.20-27
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of saturated overland flow, subsurface flow and stream flow was evaluated at two watersheds. this model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. the model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS (Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

Application of Grid-based Kinematic Wave Storm Runoff Model

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Seok
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2000년도 학술발표회 논문집
    • /
    • pp.20-27
    • /
    • 2000
  • The grid-based KlneMatic wave STOrm Runoff Modei (Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of saturated overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS (Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

Simulation of Surface Flow and Soil Erosion on a Forest Road Using KINEROS2 Model

  • 임상준
    • 농업생명과학연구
    • /
    • 제43권4호
    • /
    • pp.1-8
    • /
    • 2009
  • The physically based model KINEROS2 was applied to forest road segments for simulating hydrology and sediment production. Data on rainfall amounts, runoff volume, and sediment yields were collected at two small plots in the Yangpyong experimental watershed. The KlNEROS2 model can be parameterized to match the volume of surface flow and sediment yields during seven storm events. Model predictions of hydrology were in good agreement with the observed data at two plots in the year 1997 and 1998. A comparison between the observed and predicted sediment yields indicated that the model provided reasonable estimates, although the model tended to under-estimate for some storm events. The overall result shows that the KINEROS2 model properly represents the hydrology and sediment transport processes in the forest road segments.

SWMM 모형을 이용한 비점오염 분석 및 CSO 관리방안 연구 - 부산시 온천천 유역 대상 - (The NPS Analysis and CSO Management Based on SWMM for Oncheon Basin)

  • 신현석;손정화;장종경;손태석;강두기;조덕준
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.268-280
    • /
    • 2009
  • Oncheon basin which are located in Busan is divided into 43 basin on the basis of main pipe, constructed with Storm Water Management Model (SWMM). Occurrence situation for Outflow and pollutant loads by long-term continuous rainfall is examined for treatment district and river analysis point of Oncheon basin and a reduction vs effectiveness table for effective CSOs managements is made for each of treatment districts according to each of managements. In case that treatment equipment is located at the discharge point of CSO, treatment efficiency is analysed. It is supposed that treatment equipment have an efficiency on the basis of a concentration and runoff discharge over a critical flow is discharged with it untreated and treating runoff discharge with treatment equipment at each of runoff discharge points and treating it gathered at sewage treatment plant (STP) through trunk sewer is compared for a relative treatment efficiency.

공간DB 기반의 강우-유출 모의를 위한 데이터 모델 설계 (Design of a Data Model for the Rainfall-Runoff Simulation Based on Spatial Database)

  • 김기욱;김창수
    • 한국지리정보학회지
    • /
    • 제13권4호
    • /
    • pp.1-11
    • /
    • 2010
  • 본 연구의 목적은 공간DB에 구축된 유역 및 관거 데이터로부터 SWMM(Storm Water Management Model) 데이터를 생성하고, 유출 위험관거, 침수지역 및 침수심 등의 분석정보를 GIS기반의 지도에 표출하기 위한 데이터 모델을 설계하는데 있다. 이를 위해 UIS(Urban Information System)와 재해대장, 기상자료 등을 기반으로 침수분석 지역의 속성데이터 생성 방법을 제시하고, ArcSDE 및 Oracle DB를 사용하여 공간데이터를 생성하였다. 또한 유출 위험지역을 지도에 표출하기 위해 ArcGIS ArcObject와 공간DB를 연계하여 프로토타입 시스템을 구축하였다. 본 연구결과는 향후 침수분석 연구에 SWMM을 효율적으로 활용하는데 도움이 될 것으로 기대된다.

단위유량도법에 의한 소유역의 계획홍수량 결정 (A Determination of Design Flood for a small Basin by Unit Hydrograph Method)

  • 윤용남;침순보
    • 물과 미래
    • /
    • 제9권2호
    • /
    • pp.76-86
    • /
    • 1976
  • The 30-year design flood hydrograph for the Musim Representative Basin, one of the study basins of the International Hydrological Program, is synthesized by the method of unit hydrograph. The theory of unit hydrograph has been well known for a long time. However, the synthesis of flood hydrograph by this method for a basin with insufficient hydrologic data is not an easy task and hence, assumptions and engineering judgement must be exercized. In this paper, the problems often encountered in applying the unit hydrograph method are exposed and solved in detail based on the theory and rational judgement. The probability rainfall for Cheonju Station is transposed to the Musim Basin since it has not been analyzed due to short period of rainfall record. The duration of design rainfall was estimated based on the time of concentration for the watershed. The effective rainfall was determined from the design rainfall using the SCS method which is commonly used for a small basin. The spatial distribution of significant storms was expressed as a dimensionless rainfall mass curve and hence, it was possible to determine the hyetograph of effective design storm. To synthesize the direct runoff hydrograph the 15-min. unit hydrograph was derived by the S-Curve method from the 1-hr unit hydrograph which was obtained from the observed rainfall and runoff data, and then it was applied to the design hyetograph. The exsisting maximum groundwater depletion curve was derived by the base flow seperation. Hence, the design flood hydrograph was obtained by superimposing the groundwater depletion curve to the computed direct runoff hydrograph resulting from the design storm.

  • PDF