Browse > Article

Estimation of Storm Hydrographs in a Small Forest Watershed Using a Distributed Hydrological Model  

Lee, Sang-Ho (Department of Forest Sciences, Seoul National University, Research Institute for Agriculture and Life Sciences)
Woo, Bo-Myeong (Department of Forest Sciences, Seoul National University)
Im, Sang-Jun (Department of Forest Sciences, Seoul National University, Research Institute for Agriculture and Life Sciences)
Publication Information
Abstract
This study was conducted to simulate storm hydrographs on a small forested watershed using TOPMODEL, which is a distributed hydrological model. The Myeongseong watershed, which is 58.3 ha in size, was selected to monitor rainfall and runoff data. The Monte Carlo simulation was also used to calibrate parameters of TOPMODEL. Six rainfall-runoff pairs collected at the watershed in the year 1997 were used for parameter calibration, and eight rainfall-runoff pairs collected during the period of $1998\sim1999$ were used for validation effort. The errors of runoff volume ranged from -2.74% to 1.81%, and an average value of model efficiency in terms of runoff volume was 0.92 for the calibration period. The average value of observed peak discharge was $0.324m^3\;s^{-1}$ for six rainfall-runoff pairs, while the prediction value was $0.295m^3\;s^{-1}$. The simulation errors of peak discharge varied according to rainfall characteristics and antecedent condition, within ranges of -27.65% to -1.13%. The model efficiency for the validation period was 0.92. For the validation period, observed peak discharges have an average value of $0.087m^3\;s^{-1}$ and average value of simulated peak discharge was $0.090m^3\;s^{-1}$. Observed and simulated values of time to peak for the calibration period were 18.3 hrs and 11.0 hrs, respectively, and 16.6 hrs and 13.5 hrs, respectively, for the validation period.
Keywords
TOPMODEL; runoff; peak discharge; storm hydrograph; Monte Carlo simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 김상현. 1998. 확장 TOPMODEL의 영역화 민감도 분석. 한국수자원학회논문집 31(6): 741-755
2 조홍제, 조인률, 김정식. 1997. TOPMODEL을 이용한 강우-유 출해석에 관한 연구. 한국수자원학회논문집 30(5): 515-526
3 최형태. 2001. 분포형 수문모형 TOPMODEL을 이용한 산림 유역 강우-유출모형의 개발, 서울대학교 박사학위논문. 183 p.
4 太田猛彦, 塚本良則, 城戶 毅. 1983a. 丘陵性自然斜面における雨水移動の實證的硏究(II)-斜面內地中流の實態. 日林誌 67(10): 383-390
5 Beven, K.J. 1997. Topmodel: A critique. Hydrological Processes 11: 1069-1085   DOI   ScienceOn
6 Beven, K.J. and E.F. Wood. 1983. Catchment geomorphology and the dynamics of runoff contributing areas. Journal of Hydrology 65: 139-158   DOI   ScienceOn
7 Domingo, F., G. Sánchez, M.J. Moro, A.J. Brenner and J. Puigdefábregas. 1998. Measurement and modelling of rainfall interception by three semi-arid canopies. Agricultural and Forest Meteorology 91: 275-292   DOI   ScienceOn
8 Franchini, M., J. Wending, C. Obled and E. Todini. 1996. Physical interpretation and sensitivity analysis of the TOPMODEL. Journal of Hydrology 175: 293-338   DOI   ScienceOn
9 Holko, I. and A. Lepisto. 1997. Modelling the hydrological behaviour of a mountain catchment using TOPMODEL. Journal of Hydrology 196: 361-377   DOI   ScienceOn
10 Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models. I. A discussion for principles. Journal of Hydrology 10: 282-290   DOI   ScienceOn
11 Ostendorf, B. 1996. The influence of hydrological processes on spatial and temporal pattern of $CO_2$ soil efflux from an arctic tundra environment. Arctic and Alpine Research 28: 316-325
12 Quinn, P.F. and K.J. Beven. 1993. Spatial and temporal predictions of soil moisture dynamics, runoff variable source areas and evapotranspiration for Plynlimon, mid- Wales. Hydrological Processes 7: 425-448   DOI   ScienceOn
13 Singh, V.P. 1995. Computer models of watershed hydrology. Water Resources Publications. USA. 1144 p.
14 Takasao, T. and K. Takara. 1998. Evaluation of rainfallrunoff models from the stochastic viewpoint. Journal of Hydrology 102: 381-406   DOI   ScienceOn
15 Beven, K.J., R. Lamb, P. Quinn, R. Romanowiez and J. Freer. 1995. TOPMODEL. p. 627-668. In: Singh, V.P. (eds.), Computer Models of Watershed Hydrology. Water Resources Publications. USA
16 Troch, P.A., M. Mancini, C. Paniconi and E.F. Wood. 1993. Evaluation of a distributed catchment scale water balance model. Water Resources Research 29: 1805-1817   DOI   ScienceOn
17 Ambroise, B., J. Freer and K.J. Beven. 1996a. Application of a generalized TOPMODEL to the small Rigelbach catchment, Vosges, France. Water Resources Research 32(7): 2147-2159   DOI   ScienceOn
18 Chang, J.H., Y.K. Tung and J.C. Yang. 1994. Monte Carlo simulation for correlated variables with marginal distributions. Journal of Hydraulic Engineering 120(3): 313-331   DOI   ScienceOn
19 Ostendorf, B., P.F. Quinn, K.J. Beven and J.D. Tenhunen. 1996. Hydrological controls on ecosystem gas exchange in an Arctic landscape. p. 369-386. In: Reynolds, J.R. and J.D. Tenhunen (eds.), Landscape Function and Disturbance in Arctic Tundra. Springer-Verlag, Berlin
20 Ambroise, B., J. Freer and K.J. Beven. 1996b. Toward a generalization of the TOPMODEL concepts: topographic indices of hydrological similarity. Water Resources Research 32(7): 2134-2145
21 정용호, 이헌호, 박재현, 최형태, 김경하, 윤호중. 2000. 영월댐 유역에서의 산림정비에 의한 홍수저감효과 분석. 영월댐 조사결과보고서 2: 홍수. 영월댐 공동조사단. p. 247-272
22 Beven, K.J. and M.J. Kirkby. 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1): 43-69   DOI   ScienceOn
23 Wolock, D.M. and G.J. McCabe. 1995. Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL. Water Resources Research 31: 1315-1324   DOI   ScienceOn
24 Beven, K.J. 1986. Runoff production and flood frequency in catchments of order n: an alternative approach. p. 107- 131. In: Gupta, V.K., I. Rodriguez-Iturbe, E.F. Wood, eds. Scale Problems in Hydrology. Boston: D. Reidel
25 太田岳史. 阿部 實. 1985. 一次元鉛直不飽和浸透流を用いた雨水流出特性の檢討(III)-斜面流出モデルの三期層斜面への適用結果. 日林誌 67(3): 99-102
26 Pinol, J., K.J. Beven and J. Freer. 1997. Modelling the hydrological response of Mediterranean catchments, Prades, Catalonia. The use of distributed models as aids to hypothesis testing. Hydrological Processes 11: 1287-1306   DOI   ScienceOn
27 Young, R.A., C.A. Onstand, D.D. Bosch and W.P. Anderson. 1989. AGNPS. A non-point source pollution model for evaluating agricultural watersheds. Journal of Soil Water Conservation 44(2): 168-173
28 Fishman, G.S. 1996. Monte Carlo: concepts, algorithms, and applications, Springer Verlag, New York. 698 p.
29 Krajewski, W.F., V. Lakshmi, K.P. Georgakakos and S.C. Jain. 1991. A Monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resources Research 27(1): 119-128   DOI
30 김상현. 1997. 인공배수유역에서의 TOPMODEL의 적용. 한국수자원학회논문집 30(5): 539-548
31 太田岳史. 福島義宏, 鈴木雅一. 1983b. 一次元鉛直不飽和浸透流を用いた雨水流出特性の檢討. 日林誌 65(4): 125-134
32 Refsgaard, J.C. and B. Storm. 1995. MIKE SHE. pp. 809- 846. In: Singh, V.P. (eds.), Computer Models of Watershed Hydrology. Water Resources Publications. USA
33 Gardner, R.H., D.D. Huff, R.V. O'Neill, J.B. Mankin, J. Garney and J. Jones. 1980. Application of error analysis to a marsh hydrology model. Water Resources Research 16(4): 659-664   DOI
34 谷誠. 1985. 山地溪流の流出特性を考慮した一次元鉛直不飽和浸透流の解析. 日林誌 67(11): 449-460
35 Fisher, J. and K.J. Beven. 1996. Modelling of streamflow at Slapton Wood using TOPMODEL within and uncertainty estimation framework. Field Studies 8: 577-584
36 Beven, K.J. and A.M. Binley. 1992. The furture of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6: 279-293   DOI
37 조홍제, 조인률. 1998. 분포형 유출모형을 이용한 홍수유출해석. 한국수자원학회논문집 31(2): 199-208
38 한국수자원공사. 1993. 지리정보시스템을 이용한 수자원 관리 및 계획에 관한 연구. 한국수자원공사, 180 p.
39 太田岳史. 1983. 一次元鉛直不飽和浸透流を用いた雨水流出特性の檢討(II)-初期水分條件を直接流出特性. 日林誌 65(12): 448-457
40 Iorgulescu, I. and J.P. Jordan. 1994. Validation of TOPMODEL in a small Swiss catchment. Journal of Hydrology 159: 255-273   DOI   ScienceOn