• Title/Summary/Keyword: Storm Water Runoff

Search Result 333, Processing Time 0.026 seconds

The Management of Nonpoint Source and Storm Water Reduction with LID Techniques in Inchon City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • Journal of Environmental Science International
    • /
    • v.24 no.10
    • /
    • pp.1239-1251
    • /
    • 2015
  • Impervious areas have been expanded by urbanization and the natural structure of water circulation has been destroyed. The limits of centralized management for controlling storm water runoff in urban areas have been suggested. Low impact development (LID) technologies have been promoted as a crucial alternative, establishing a connection with city development plans to build green infrastructures in environmentally friendly cities. Thus, the improvement of water circulation and the control of nonpoint source were simulated through XP-SWMM (storm water and wastewater management model for experts) in this study. The application of multiple LID combination practices with permeable pavements, bioretention cells, and gutter filters were observed as reducing the highest runoff volume by up to 70%. The results from four different LID installation scenarios indicated that permeable paving is the most effective method for reducing storm water runoff. The rate of storm water runoff volume reduced as the rainfall duration extended. Based on the simulation results, each LID facility was designed and constructed in the target area. The LID practices in an urban area enable future studies of the analysis of the criteria, suitable capacity, and cost-efficiency, and proper management methods of various LID techniques.

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.

An Application of Z-transform in Single Storm Analysis (단일 호우 해석을 위한 Z-transform 기법의 적용)

  • Park, Haen-Nim;Cho, Won-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.583-587
    • /
    • 2005
  • At present, various methods are available to analyze storm runoff data. Among these, application of Z-transform is comparatively simple and new, and the technique can be used to identify rainfall and unit hydrograph from analysis of a single storm runoff. The technique has been developed under the premise that the rainfall-runoff process behaves as a linear system for which the Z-transform of the direct runoff equals the product of the Z-transforms of the transfer function and the rainfall. In the hydrologic literatures, application aspects of this method to the rainfall-runoff process are lacking and some of the results are questionable. Thus, the present study provides the estimation of Z-transform technique by analyzing the application process and the results using hourly runoff data observed at the research basin of International Hydrological Program (IHP), the Pyeongchanggang River basin. This study also provides the backgrounds for the problems that can be included in the application processes of the Z-transform technique.

  • PDF

Runoff simulation for operation of small urban storm water pumping station under heavy storm rainfall conditions (집중호우 시 도시 소유역 배수펌프장 운영을 위한 강우유출모의)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Sung-Geun;Lee, Chang-No;Kim, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.

  • PDF

Comparing of Hydrograph Separation in deciduous and coniferous catchments using the End-Member Mixing Analysis (End-Member Mixing Analysis를 이용한 산림 소유역의 임상별 유출분리 비교)

  • Kim, Su-Jin;Choi, Hyung Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • To understand the difference of runoff discharge processes between Gwangneung deciduous and coniferous forest catchments, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge) and conducted hydrochemical analyses in the deciduous and coniferous forest catchments in Gwangneung National Arboretum in the northwest part of South Korea. Based on the end-member mixing analysis of the three storm events during the summer monsoon in 2005, the hillslope runoff in the deciduous forest catchment was higher 20% than the coniferousforest catchment during the firststorm event. Howerver, hillslope runoff increased from the second storm event in the coniferous catchment. We conclude that low soil water contents and topographical gradient characteristics highly influence runoff in the coniferous forest catchment during the first storm events. In general, coniferous forests are shown high interception loss and low soil moisture compared to the deciduous forests. It may also be more likely to be a reduction in soil porosity development when artificial coniferous forests reduced soil biodiversity. The forest soil porosity is an important indicator to determine the water recharge of the forest. Therefore, in order to secure the water resources, it should be managed coniferous forests for improving soil biodiversity and porosity.

An Analysis of First Flush Phenomenon of 3 Catchment area in Lake Sihwa Watershed during Rainfall-Runoff Events (강우유출수 영향에 따른 시화호 소유역별 유입하천의 오염물질 초기유출현상 분석)

  • Kim, Sea-Won;Oh, Jong-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.475-485
    • /
    • 2011
  • Lake Sihwa has a very unique watershed environment, surrounded by industrial, urban and rural catchment area with different land use. The first flush phenomenon was investigated in 3 catchment area. 4TG, representing the industrial area, shows rapid discharges of highly concentrated pollutants during the early stages of a storm and it is indicating a strong first flush effect. At AS, representing the urban area, the pollutant concentration reached its peak approximately 2~3 hours after the start of storm, which is a strong first flush effect did not appear. JJB and MS represent the rural areas, the PEMC analysis results suggest that highly concentrated pollutants were discharged during the middle and latter stages of a storm, instead of early pollutant runoff due to the effects of rainwater runoff.

Evaluation of Runoff Loads and Computing of Contribute ratio by First Flush Stormwater from Cheongyang-Hongseong Road (청양-홍성간 도로에서의 초기강우에 의한 유출부하량 평가 및 기여율 산정)

  • Lee, Chun-Won;Kang, Seon-Hong;Choi, I-Song;An, Tae-Ung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.407-417
    • /
    • 2011
  • Nowadays, the high land use, mainly used for urbanization, is affecting runoff loads of non-point pollutants to increase. According to this fact, increasing runoff loads seems like to appear that it contributes to high ratio of pollution loads in the whole the pollution loads and that this non-point source is the main cause of water becoming worse quality. Especially, concentrated pollutants on the impermeable roads run off to the public water bodies. Also the coefficient of runoff from roads is high with a fast velocity of runoff, which ends up with consequence that a lot of pollutants runoff happens when it is raining. Therefore it is very important project to evaluate the quantity of pollutant loads. In this study, I computed the pollutant loadings depending on time and rainfall to analyze characteristics of runoff while first flush storm water and evaluated the runoff time while first flush storm water and rainfall based on the change in curves on the graph. I also computed contribution ratio to identify its impact on water quality of stream. I realized that the management and treatment of first flush storm water effluents is very important for the management of road's non-point source pollutants because runoff loads of non-point source pollution are over the 80% of whole loads of stream. Also according to the evaluation of runoff loads of first flush storm water for SS, run off time was shown under the 30 minute and rainfall was shown under the 5mm which is less than 20% of whole rainfall. These are under 5mm which is regarded amount of first flush storm water by the Ministry of Environment and it is judged to be because run off by rainfall is very fast on impermeable roads. Also, run off time and rainfall of BOD is higher than SS. Therefore I realized that the management of non-point source should be managed and done differently depending on each material. Finally, the contribution ratio of pollutants loads by rainfall-runoff was shown SS 12.7%, BOD 12.7%, COD 15.9%, T-N 4.9%, T-P 8.9%, however, the pollutants loads flowing into the steam was shown 4.4%. This represents that the concentration of non-point pollutants is relatively higher and we should find the methodical management and should be concerned about non-point source for improvement on water quality of streams.

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

Verification of Nonpoint Sources Runoff Estimation Model Equations for the Orchard Area (과수재배지 비점오염부하량 추정회귀식 비교 검증)

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, regression equation was analyzed to estimate non-point source (NPS) pollutant loads in orchard area. Many factors affecting the runoff of NPS pollutant as precipitation, storm duration time, antecedent dry weather period, total runoff density, average storm intensity and average runoff intensity were used as independent variables, NPS pollutant was used as a dependent variable to estimate multiple regression equation. Based on the real measurement data from 2008 to 2012, we performed correlation analysis among the environmental variables related to the rainfall NPS pollutant runoff. Significance test was confirmed that T-P ($R^2=0.89$) and BOD ($R^2=0.79$) showed the highest similarity with the estimated regression equations according to the NPS pollutant followed by SS and T-N with good similarity ($R^2$ >0.5). In the case of regression equation to estimate the NPS pollutant loads, regression equations of multiplied independent variables by exponential function and the logarithmic function model represented optimum with the experimented value.

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.