• Title/Summary/Keyword: Storm Water Management

Search Result 275, Processing Time 0.024 seconds

Survey on sewerage operation/management planning for flooding (II) (하수관거시설의 침수대응 운영·관리 실태 연구 (II))

  • Ryu, Jaena;Cha, Young Joo;Oh, Jeill;Hyun, In Hwan;Kim, Young-Ran;Chang, Dae-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.271-276
    • /
    • 2009
  • Under current design standard, sewers are designed to drain stormwater generated up to 10 year return period of storms. This implies sewer flooding could occur from rainfall exceeding a 10 year return period. 5, 10, 20 and 30 year return period of storm intensities were calculated for 22 locations (cities) of meterological stations over the nation and compared to the recorded rainfall intensities for the last 30 years. The comparison resulted in the numbers of year maximum rainfall intensities exceeded each return period. Using the questionnaire survey for "the incidences of flooding since 1980" of the previous paper (Survey on sewerage operation/management planning for flooding (I)), the actual rainfall records on the date of flooding events were analyzed to demonstrate the number of flooding events caused by the exceedance of sewer capacity. For the last 30 years, more than 6 years of year maximum rainfall intensity (20%) were larger than the 10 year return period of storm in 4 cities of the 22 used for the first analysis. The number of rainfall records that exceeded the 10 year return period was 50 of the 260 actual flooding events investigated from the survey.

LIDMOD2 Development for Evaluation of LID/BMPs (LID/BMPs 효과분석을 위한 LIDMOD2 개발)

  • Jeon, Ji-Hong;Choi, Donghyuk;Na, Eun Hye;Park, Chan-Gi;Kim, Tae-Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.432-438
    • /
    • 2010
  • LIDMOD2 was developed for evaluation of low impact development (LID) and best management practice (BMP) by modification of Site Evaluation Tool (SET). The modification includes employment of SCS-CN method for annual runoff simulation, unit load method for annual pollutant loads simulation, and the method proposed by Korean TMDL for calculating pollutant reduction by BMPs. The CN values were updated with regionalized parameters within Nack-Dong River basin because these are important parameters for simulating hydrology. LIDMOD2 was tested by applying to Andong Bus terminal. As a simulation results, pollutant loads and surface runoff will be significantly increased by post-development without LID compared with those from pre-development. LID technique was simulated to efficiently reduce surface runoff and pollutant load and increase infiltration. LIDMOD2 is screening level tool and easy to use because LIDMOD2 is based on spread sheet and most of parameters are regionalized. LIDMOD2 was illustrate that it could evaluate LID well by summarizing and graphing annual hydrology, annual pollutant loading, and hydrograph for event storm. The calculation methods related with pollutant loads are employed from the guideline of Korean TMDL and it can be useful tool for Korean TMDL to evaluate the effect of LID/BMP on developing area.

Modeling Large Scale of Urban Nonpoint Source Pollution using a Geographic Information System (지리정보체계를 이용한 도시 비점원오염의 대축척 모형화)

  • Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.171-180
    • /
    • 1993
  • Concern about nonpoint source pollution associated with urban storm water has led to the development of new tools for better water quality planning. This paper presents an application of a geographic information system (GIS) for urban water quality study. The GIS was used to manage land use data for nonpoint source pollution modeling and to aggregate pollutant loadings within various types of geographic units. An empirical water quality model was used to estimate pollutant loadings based primarily on land use. A land use coverage was created by updating an old coverage through interpretation of recent photography. This land use coverage was also used to record all pollutant loadings for each land use polygon. Storm sewer maps were digitized and interpreted to create a coverage of storm sewer basins and sub-basins. By overlaying pollutant loadings with the sewer sub-basin layer, aggregated pollutant loadings for major sewer outfalls were calculated. Based on the loading information, critical areas of excessive pollutant loadings were located and the effectiveness of Best Management Practices (BMPs) to control pollutant loadings were evaluated.

  • PDF

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

The Urban Water Cycle Planning Elements and Hydrologic Cycle Simulation for Green City (녹색도시 물순환 계획요소 및 수문순환 모의)

  • Lee, Jung-Min;Kim, Jong-Lim
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.271-278
    • /
    • 2012
  • The climate change and global warming has been a world-wide issue. Also, the green growth has been a widely adopted strategy for national and regional development. In particular, after the Kyoto Protocol to United Nations Framework Convention on Climate Change was declared, the low carbon society was inevitable phenomenon. The hydrologic cycle in urban catchment has been changed due to the expansion of impervious area by rapid urban development. This paper has examined the Water cycle planning elements for green city in the scale of urban planning as well as site planning including housing site. In this study, the SWMM5-LID (Storm Water Management Model5-LID) model was used to simulate the hydrologic cycle of the test catchment as a typical urban catchment. We performed continuous simulation on urban runoff before and after the development of the test catchment and after the installation of Green city planning Elements.

A Bayesian Approach to Storm Water Management Model (SWMM) for the Estimation of Parameters and Their Uncertainty (Bayesian 기법과 연계한 SWMM 매개변수 추정 및 불확실성 분석)

  • Kim, Jang-Gyeong;Ban, U-Sik;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.110-110
    • /
    • 2016
  • 도시 유역의 강우-유출 모의에는 지표 투수율 및 하수관거 영향 등 인위적 배수계통의 영향을 고려할 수 있는 도시유출모형이 널리 이용되고 있으며, 모형 검증을 통해 모의 성능을 평가한다. 도시유출모형의 검증은 일반적인 강우-유출 모형과 같이 강우사상별 유량의 관측시계열과 모의시계열의 목적함수가 최소가 되는 최적 매개변수를 탐색하는 과정이다. 도시유출모형의 검증에서 발생하는 문제점은 크게 다음과 같다. 첫째, 대규모 도시 유역의 복잡하고 다양한 하수관거에 대한 최적매개변수를 관거별로 구하는 것은 물리적으로 불가능하다. 따라서 동일 배수분구내 하수관거의 매개변수 값은 동일하다고 가정하거나, 모형 단순화 과정을 통해 매개변수의 물리적 범위 내에서 최적해를 탐색해야 하는 단순화에서 기인한 불확실성이 있다. 둘째, 다양한 매개변수들의 물리적 범위를 고려하기 위해서는 전역최적화기법이 유효하다. 그러나 전역최적화 종류, 목적함수, 모의횟수, 목표성능별 최적 매개변수 결과가 각각 다르므로 추정된 최적 매개변수의 범위에 대한 불확실성이 있다. 이에 본 연구에서는 Bayesian 모형과 EPA SWMM(Storm Water Management Model)을 연계하여 도시유출모형의 매개변수 불확실성을 정량적으로 분석할 수 있는 모형을 제안하고자 한다. 이를 위해 서울 우이천 유역을 대상으로 SWMM 모형을 구축하고, 절단 정규분포(truncated Gaussian distribution)를 사전분포(prior)로 가정하여 매개변수의 물리적 범위를 고려하였다. 최종적으로 결합확률분포로 계산된 각 매개변수간 사후분포를 통해 모의된 유출량의 불확실성을 정량적으로 분석하였다. 본 연구에서 제안된 모형은 대규모 도시 유역의 도시유출모형 구축 시 다양한 매개변수의 물리적 범위를 고려한 최적화와 동시에 내재된 불확실성을 정량적으로 분석할 수 있으므로, 침수예측 및 홍수예경보 등의 문제에서 상당한 신뢰성을 확보할 수 있을 것으로 판단된다.

  • PDF

Application of AGNPS Water Quality Computer Simulation Model to a Cattle Grazing Pasture

  • Jeon, Woo-Jeong;Parajuli, P.;Yoo, K.-H.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.83-93
    • /
    • 2003
  • This research compared the observed and model predicted results that include; runoff, sediment yield, and nutrient losses from a 2.71 ha cattle grazing pasture field in North Alabama. Application of water quality computer simulation models can inexpensively and quickly assess the impact of pasture management practices on water quality. AGNPS single storm based model was applied to the three pasture species; Bermudagrass, fescue, and Ryegrass. While comparing model predicted results with observed data, it showed that model can reasonably predict the runoff, sediment yield and nutrient losses from the watershed. Over-prediction and under-prediction by the model occurred during very high and low rainfall events, respectively. The study concluded that AGNPS model can be reasonably applied to assess the impacts of pasture management practices and chicken litter application on water quality.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

Development of Integrated Management System of Stormwater Retention and Treatment in Waterside Land for Urban Stream Environment (도시 하천 환경 관리를 위한 제외지 초기 강우 처리 및 저류 시설 종합 관리 시스템 개발)

  • Yin, Zhenhao;Koo, Youngmin;Lee, Eunhyoung;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • Increase of delivery effect of pollutant loads and surface runoff due to urbanization of catchment area results in serious environmental problems in receiving urban streams. This study aims to develop integrated stormwater management system to assist efficient urban stream flow and water quality control using information from the Storm Water Management Model (SWMM), real time water level and quality monitoring system and remote or automatic treatment facility control system. Based on field observations in the study site, most of the pollutant loads are flushed within 4 hours of the rainfall event. SWMM simulation results indicates that the treatment system can store up to 6 mm of cumulative rainfall in the study catchment area, and this means any type of normal rainfall situation can be treated using the system. Relationship between rainfall amount and fill time were developed for various rainfall duration for operation of stormwater treatment system in this study. This study can further provide inputs of river water quality model and thus can effectively assist integrated water resources management in urban catchment and streams.