• Title/Summary/Keyword: Storm Water Management

Search Result 275, Processing Time 0.021 seconds

Hydrological Consequences of Converting Forestland to Coffee Plantations and Other Agriculture Crops on Sumber Jaya Watershed, West Lampung, Indonesia

  • Manik, Tumiar Katarina;Sidle, Roy Carl
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.4
    • /
    • pp.293-303
    • /
    • 2018
  • Sumber Jaya (54,194 hectares) is a district in West Lampung, Indonesia, located at the upper part of Tulang Bawang watershed. This watershed is one major water resource for Lampung Province, but has become a focal point of discussion because of the widespread conversion of forestland to coffee plantations and human settlements which lead to environmental and hydrological problems. This research aimed to evaluate Sumber Jaya watershed affecting by rapid land use change using hydrological methods as a base for watershed management. Nested catchment structure consisted of eight sub-catchments was employed in this research to assess scaling issues of land use change impacts on rainfall-runoff connections. Six tipping bucket rain gages were installed on the hill slopes of each sub-catchment and Parshall flumes were installed at the outlets of each sub-catchment to monitor stream flow. First, unit hydrograph that expressed the relationship of rainfall and runoff was computed using IHACRES model. Second, unit hydrograph was also constructed from observations of input and response during several significant storms with approximately equal duration. The result showed that most of the storm flow from these catchments consisted of slow flow. A maximum of about 50% of the effective rainfall became quick flow, and only less than 10% of remaining effective rainfall which was routed as slow flow contributed to hydrograph peaks; the rest was stored. Also, comparing peak responses and recession rates on the hydrograph, storm flow discharge was generally increased slowly on the rising limb and decreased rapidly on the falling limb. These responses indicated the soils in these catchments were still able to hold and store rain water.

Development of Distributed Rainfall-Runoff Model Using Multi-Directional Flow Allocation and Real-Time Updating Algorithm (II) - Application - (다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(II) - 적용 -)

  • Kim, Keuk-Soo;Han, Kun-Yeun;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.259-270
    • /
    • 2009
  • The applicability of the developed distributed rainfall runoff model using a multi-directional flow allocation algorithm and a real-time updating algorithm was evaluated. The rainfall runoff processes were simulated for the events of the Andong dam basin and the Namgang dam basin using raingauge network data and weather radar rainfall data, respectively. Model parameters of the basins were estimated using previous storm event then those parameters were applied to a current storm event. The physical propriety of the multi-directional flow allocation algorithm for flow routing was validated by presenting the result of flow grouping for the Andong dam basin. Results demonstrated that the developed model has efficiency of simulation time with maintaining accuracy by applying the multi-directional flow allocation algorithm and it can obtain more accurate results by applying the real-time updating algorithm. In this study, we demonstrated the applicability of a distributed rainfall runoff model for the advanced basin-wide flood management.

A Study on the Stormwater Drainage Method of Overflow Type for the Prevention of Urban Flood due to Abnormal Precipitation (이상강우 발생시 도시침수 방지를 위한 월류형 우수배수방법 연구)

  • Seo, Se Deok;Park, Hyung Keun;Kim, Tae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.569-577
    • /
    • 2019
  • Urban flooding has been a frequent phenomenon in recent years caused by the increase in maximum stormwater runoff arising from abnormal rainfall due to global warming, urban development, and development of lowlands according to population inflows. In order to respond positively against abnormal precipition in the city, it is necessary to check the GWI (Green Water Infra) effect and effectively utilize the existing stormwater detention tanks and treat stormwater to prevent local flooding. In this study, Overflow Type stormwater drainage methods are evaluated as a method of preventing urban flooding in abnormal precipitation using the Dynamic Wave Analysis SWMM (Storm Water Management Model) provided by the United States Environmental Protection Agency. Comparing and analyzing the Upward Watergate Type and Overflow Type, it was analyzed that the Overflow Type reduces the maximum flood discharge by 61 % and the total flood volume by 56 % in the rainfall of Typhoon Kong-rey. The application of the Overflow Type and the natural-pneumatic drainage method to the rainfall of Typhoon Soulik resulted in a 20 % reduction in maximum flood runoff and a 67 % reduction in total flood quantity. Therefore, as a solution to the abnormal rain fall, it is possible to improve the existing stormwater detection tank and install additional facilities. It is expected to be economically possible to strom drainage under limited conditions.

A Technique of Inland Drainage Control Considering flood Characteristics of the Han River (한강홍수특성을 고려한 내배수 처리기법)

  • Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.99-108
    • /
    • 1991
  • Rapid changes of urban hydrologic events need new management operation rule of detention reservoir which is essential outflow control system in urban area. Therefore, this study is to develop the outflow management method of Seoul city considering the Han river flood characteristics, to analyze the inundation of detention reservoir according to variation of design storm patterns, and to examine the safety of gate due to design flood water level. From this study, new operation rule is presented. The design storm patterns are determined by instantaneous intensity method and Huff's quartile method. And the inflow hydrograph of detention reservoir is obtained by applying ILLUDAS model and RRL method. The operation rule of existing drainage pump is designed to have linear relation between storage and pumping discharge. But in this study, it is effective for preventing inundation when the operation rule of drainage pump have Gaussian function which is combined the storage of detention reservoir with its inflow according to increasing or decreasing of inflow hydrograph.

  • PDF

The Development of a Input Data Automatic Generation System for the Storm Management Simulation based on UIS (UIS기반 홍수관리 시뮬레이션을 위한 입력 데이터 자동 생성 시스템 개발)

  • Kim, Ki-Uk;Lee, Jeong-Eun;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.247-256
    • /
    • 2008
  • Recently, natural disasters like flooding damages have frequently occurred as to typhoons and local downpours affected by the climate changes. Many researches have actively been studied in analysing runoff models, the verification of their parameters, and the inflow on surfaces in order to lessen the damages. However, much time and effort needs in generating input files of the models in most current researches. Therefore, in this paper we develop a system for generating a simulation input data automatically. This system is connected to the EPA-SWMM based on the spatial data in the UIS systems and consists the simulation module for analysing urban flooding and the SWMM simulator module. Also, we construct a prototype using a range of regular inundation to generate a simulation input file. This system gives advantages showing inundation areas based on the map viewer as well as lessening errors of input data and simulation time.

  • PDF

A Warning and Forecasting System for Storm Surge in Masan Bay (마산만 국지해일 예경보 모의 시스템 구축)

  • Han, Sung-Dae;Lee, Jung-Lyul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.131-138
    • /
    • 2009
  • In this paper, a dynamic warning system to forecast inland flooding associated with typhoons and storms is described. The system is used operationally during the typhoon season to anticipate the potential impact such as inland flooding on the coastal zone of interest. The system has been developed for the use of the public and emergency management officials. Simple typhoon models for quick prediction of wind fields are implemented in a user-friendly way by using a Graphical User Interface (GUI) of MATLAB. The main program for simulating tides, depth-averaged tidal currents, wind-driven surges and currents was also vectorized for the fast performance by MATLAB. By pushing buttons and clicking the typhoon paths, the user is able to obtain real-time water level fluctuation of specific points and the flooding zone. This system would guide local officials to make systematic use of threat information possible. However, the model results are sensitive to typhoon path, and it is yet difficult to provide accurate information to local emergency managers.

Development and Implementation of Prototype for Intelligent Integrated Agricultural Water Management Information System and Service including Reservoirs managed by City and County (시군관리 저수지를 고려한 지능형 통합 물관리정보시스템 원형 개발 및 구현)

  • Kim, Dae-Sik;Kang, Seok-Man;Kim, Jin-Taek;Kim, Jeong-Dae;Kim, Hyun-Ho;Jang, Jin-Uk
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.3
    • /
    • pp.163-174
    • /
    • 2017
  • This study developed the prototype of the system and implemented its main functions, which is the intelligent integrated agricultural water management information system and service (IaWAMISS). The developed system was designed to be able to collect, process and analyze the agricultural water information of spatially dispersed reservoirs in whole country and spatial geographic information distributed in various systems of other organizations. The system, IaWAMISS, is also possible to provide the reproduced information services in each reservoir and space units, such as agricultural water demand and supply analysis and drought prediction, to the people, experts, and policy makers. This study defined the 6 step modules to develop the system, which are to design the components of intelligent integrated information system, to derive the utilization contents of existing systems, to design the new development elements for IaWAMISS, to design the reservoir information system can be used by managers of city and county, to designate the monitoring reservoirs managed by city and county, and finally to prepare the sharing system between organizations with the existing information systems. In order to implement the prototype of the system, this study shows the results for three important functions of the system: spatial integration of reservoirs' information, data link integration between the existing systems, and intelligent analysis program development to assist decision support for agricultural water management. For the spatial integration with the reservoir water information of the Korea Rural Community Corporation, this study get IaWAMISS to receive the real-time reservoir storage information from the measurement facility installed in the municipal management reservoir. The data link integration connecting databases of the existing systems, was implemented by integrating the meteorological information of the Korea Meteorological Administration with IaWAMISS, so that the rainfall forecast data could be derived and used. For the implementation of the intelligent analysis program, this study also showed the results of analysis and prediction of agricultural water demand and supply amount, estimation of Palmer drought index, analysis of flood risk area in typhoon course region, and analysis of the storage status of reservoirs related to each storm. This study confirmed the possibility and efficiency of an useful system development through the prototype design and implementation of IaWAMISS. By solving the preliminary 6 step modules presented in this study, it is possible not only to efficiently manage water by spatial unit, but also to provide the service of information and to enhance the relevant policy and national understanding to the people.

Hydrologically Route-based Green Infra facilities assessment Model: Focus on Bio-retention cells, Infiltration trenches, Porous Pavement System, and Vegetative Swales (수문학적 추적 기반의 GI 시설 평가 모델: 생태저류지, 침투도랑, 투수성포장, 식생수로를 대상으로)

  • Won, Jeongeun;Seo, Jiyu;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.74-84
    • /
    • 2021
  • Active stormwater management is essential to minimize the impact of urban development and improve the hydrological cycle system. In recent years, the Low Impact Development (LID) technique for urban stormwater management is attracting attention as a reasonable alternative. The Storm Water Management Model (SWMM) is actively used in urban hydrological cycle improvement projects as it provides simulation functions for various GI (Green Infra) facilities through its LID module. However, in order to simulate GI facilities using SWMM, there are many difficulties in setting up complex watersheds and deploying GI facilities. In this study, a model that can evaluate the performance of GI facilities is proposed while implementing the core hydrological process of GI facilities. Since the proposed model operates based on hydrological routing, it can not only reflect the infiltration, storage, and evapotranspiration of GI facilities, but also quantitatively evaluate the effect of improving urban hydrological cycle by GI facilities. The applicability of the proposed model was verified by comparing the results of the proposed model with the results of SWMM. In addition, a discussion of errors occurring in the SWMM's permeable pavement system simulation is included.

A study on the rainfall-runoff reduction efficiency on each design rainfall for the green infrastructure-baesd stormwater management (그린인프라 기반 빗물 관리를 위한 설계강우량별 강우-유출저감 효율성 분석 연구)

  • Kim, Byungsung;Kim, Jaemoon;Lee, Sangjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.613-621
    • /
    • 2022
  • Due to the global climate change, the rainfall volume and frequency on the Korean Peninsula are predicted to increase at the end of the 21st century. In addition, impervious surface areas have increased due to rapid urbanization which has caused the urban water cycle to deteriorate. Green Infrastructure (GI) researches have been conducted to improve the water cycle soundness; the efficiency of this technique has been verified through various studies. However, there are still no suitable GI design guidelines for this aspect. Therefore, the rainfall scenarios are set up for each percentile (60, 70, 80, 90) based on the volume and frequency analysis using 10-year rainfall data (Busan Meteorological Station). After determining the GI areas for each scenario, the runoff reduction characteristics are analyzed based on Storm Water Management Model (SWMM) 10-year rainfall-runoff-simulations. The total runoff reduction efficiency for each GI areas are computed to have a range of 13.1~52.1%. As a results of the quantitative analysis, the design rainfall for GI is classified into the 80~85 percentile in the study site.

Spatial prioritization of permeable pavement considering multiple general circulation models: Mokgamcheon watershed (다수의 전지구모형을 고려한 투수성 포장시설의 우선지역 선정: 목감천 유역)

  • Song, Younghoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1011-1023
    • /
    • 2019
  • Rapid urbanization increases the risk of hydrologic disasters due to the increase of impervious areas in urban areas. Precipitation characteristics can be transformed due to the rise of global temperatures. Thus urban areas with the increased impervious areas are more exposed to hydrological disasters than ever before. Therefore, low impact development practices have been widely installed to rehabilitate the distorted hydrologic cycle in the urban area. This study used the Stormwater Management Model to analyze the water quantity and quality of the Mokgamcheon which had been severely urbanized, considering future climate scenarios presented by various general circulation models (GCMs). In addition the effectiveness of permeable pavement by 27 sub-watersheds was simulated in terms of water quantity and quality considering various GCMs and then the priorities of sub-watersheds were derived using an alternative valuation index which uses the pressure-state-response framework.