• Title/Summary/Keyword: Storage volume

Search Result 978, Processing Time 0.025 seconds

A Study on the Physical Characteristics of Irrigation Reservoirs in Korea (우리나라 관개용 흙댐 저수지의 외형적 제특성에 관한 연구)

  • 정두희;안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.29-37
    • /
    • 1983
  • This study was carried out not only to prepare available materials that can be utilized in basic planning of irrigation reservoirs, but also to contribute to the study on countermeasures for reasonable irrigation water development in Korea in the future, through the investigation for the structural characteristics of reservoirs and their change trend by an epoch. During this study 123 sites of sample reservoirs were analysed in their dimensions of physical constituent factors. The physical characteristics and their change trends revealed by this study are summarized as follows: 1. For the irrigation earth dam in Korea the correlation between dam volume (v) and dam height & length (H$^2$L) can be described as the formula of v=1. 434H2L~17, 300 (r=0. 933), from which embankment amount is assumed to be quickly estimated under determined dam height and length of the proposed reservoir. 2. The ratio of dam volume to dam height & length ranges approximately from 0.5 to 3 (1.7 in average), that of storage capacity to dam volume 2 to 10 (8.4 in average), that of irrigation area to full water surface area 5 to 20 (13 in average) and that of catchment area to irrigation area 2 to 5 (4 in average). Though correlation between dam volume and dam height & length is high, that between others is relatively low. 3. Average storage depth ranges approximately from 4m to l0m (6.6m in average), unit storage capacity 0. 4m to 0. 8m (0.54 in average) and shape factor of dam 5 to 20 (10.5 in average). 4. The more recently planned the reservoirs were, the less storage capacity, dam volume, full water surface and dam shape factor they have. 5. The more recently planned the reservoirs were, the larger storage depth and unit storage capacity they have.

  • PDF

A Novel Volume Hologram Encryption Using Complementary Data and Binary Amplitude Mask (상보 데이터와 이진 진폭 마스크를 이용한 새로운 체적 홀로그램 암호화)

  • Kim, Hyun;Kim, Do-Hyung;Lee, Yeon-H.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.143-149
    • /
    • 2005
  • In this paper we propose a novel volume hologram encryption system with binary amplitude masks rather than phase masks, in which volume holograms can be securely recorded against the attacks by a third party. In our system, the encryption is done by multiplexing two volume holograms in such a way that an original binary data page is first stored as a volume hologram by interference with a binary amplitude mask and then the complementary data page is stored as another volume hologram by interference with the complementary binary amplitude mask over the first hologram. The operation principle of our system is explained with the well-known theory of recording and reading a volume hologram in a photorefractive material and the experimental results are presented. Experimental data show that our encryption system is protected from blind decryptions by randomly-generated incorrect amplitude masks.

  • PDF

Analyzing the Reduction of Runoff and Flood by Arrangements of Stormwater Storage Facilities (우수저류시설의 배치방법에 따른 유출 및 침수피해 저감효과 분석)

  • Park, Changyeol;Shin, Sang Young;Son, Eun Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • This study analyzes the reduction effects of runoff and flood damage through different arrangements of stormwater storage facilities. Three scenarios based on the spatial allocation of storage capacity are used: concentrated, decentralized and combinative. The characteristics of runoff and flood damage by scenario are compared. The XP-SWMM model is used for runoff simulation by the probable rainfall of return period. The result shows that the concentrated arrangement of storage facilities is most effective to reduce the amount of peak flow and to delay the time of peak flow. Yet, while the concentrated arrangement is most effective to reduce the inundation damage, it is not effective to reduce runoff volume. The decentralized arrangement is most effective to reduce runoff volume. The combinative arrangement is effective not only the runoff reduction but also the reduction of flood damage. The result indicates that the flood mitigation strategies against heavy rainfall need to consider decentralized on-site arrangement for the reduction of runoff volume along with concentrated off-site arrangement of storage facilities.

Quality Characteristics of Muffins with Suchero (슈케로를 첨가한 머핀의 품질특성)

  • Hwang, Yoon-Kyung;An, Hye-Lyung
    • Culinary science and hospitality research
    • /
    • v.23 no.8
    • /
    • pp.1-10
    • /
    • 2017
  • This study investigated the quality characteristics of muffins by the amount of addition of suchero (0%, 25%, 50%, 75%, 100%) as there is increasingly higher interest in functional alternative sweetener. The effects of suchero were evaluated in terms of height, volume, weight, specific volume, baking loss rate, colorimeter, and sensory evaluation. Texture and moisture contents of muffins during storage (1, 2, 3 days) were measured. As the ratio of suchero increased, the volume, specific volume, and weight increased, whereas the volume and specific volume was not significant. During storage, moisture content of muffins decreased significantly. The moisture content of the sample containing suchero was higher than S0(control group). The addition of suchero increased L value of crust and crumb decreased, whereas a value and b value increased. The muffin with 100% of suchero (S100) in test group showed the lowest hardness. According to the sensory evaluation, the muffin with 50% of suchero (S50) showed the highest score in terms of appearance, color, flavor, taste, and overall acceptance, S50 showed the best result and the optimum addition of suchero.

A Feasibility Study on Supplying Stream Minimum Flow Using Detention Storage in Developing Planned District (단지계획지구 홍수저류지의 하천유지유량 공급방안 연구)

  • Noh Jaekyoung;Park Hyun-goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1219-1223
    • /
    • 2005
  • This study was accomplished to confirm the possibility of supplying stream minimum flow from detention storage which was determined to reduce peak flows of flood within developing planned district. The results analyzed was summarized as follows; Firstly, Sin-gil district situated in Ansan city was selected, of which watershed area has $0.56km^2$. And detention storage was determined to $5,370m^3$ from analyzing flood volume by the SCS unit hydrograph method. Secondly, using Visual Basic ver 6.0, a detention storage water balance model was developed, in which simulation was based on conditioning storage inflow and outflow according to streamflow volume or rate state. And streamflow was simulated using the DAWAST model. Thirdly, detention operation scenarios were consisted of the combinations with inflow referencing streamflow of 5mm/day, 10mm/day and outflow referencing streamflow of 1mm/day, 2mm/day. The developed detention storage water balance model was operated to simulate daily water storages of detention sized on flood by scenarios. Stream minimum flows were able to be supplied during 209 days to 237 days per a year, total volume of stream minimum flows supplied for this period was analyzed to reach 27 to $55\% of yearly streamflow volume. If inflow criteria of streamflows to detention was considered to be established on a theoretical condition, it is expected to supply stream minimum flows of 20 to $30\% of yearly streamflow from stream to detention. Also to maximize function of supplying urban stream minimum flow from detention storages, sewage waters within developing planned district have to be treated and entered to detention inflow together with streamflows to enrich function of detention planned to reduce flood volumes.

  • PDF

A Study on the Battery Storage Volume Optimization in case of DR Participation for the Minimization of the Customer's Investment Cost (BESS의 DR(Demand Response) 적용 시 수용가의 투자비 최소화를 위한 적정용량산출방법)

  • Yang, Seung-Kwon;Kim, Dae-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • The BESS(Battery Energy Storage System) is an useful device for load leveling, but the high cost, installation space and safety issues are the main barriers for supplying it widely. The important factor in supplying BESS to customers successfully is the payback period. As most of the H/W cost factors are uncontrollable, the optimization of storage volume can be useful factor in improving payback period. In order to obtain optimized BESS volume, the load factor, demand ratio, peak shaving ratio, electric rates and benefits from DR participation of customer should be analyzed. In this paper, we could verify the peak cutting capability and cost effectiveness under the some proposed conditions and changing value of PCS and battery based on the customers data after volume optimization process was applied, and we can identified the saturation point of load factor and shortening of customer's payback period.

A Study on the Calculation of Storage Volume of Storm-Water Detention Basins for Small Urban Catchments (도심지 소유역에 적용 가능한 우수저류조의 용량 산정에 관한 연구)

  • Kim, Dae Geun;Koh, Young Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.619-624
    • /
    • 2005
  • This work is for examining a simplified equation based on the rational formula, which can easily decide storm-water detention volume in small urban catchments. The storm-water detention volume is determined by the inflow hydrograph flowing to detention basin and the outflow hydrograph discharged from the detention basin. The ratio of average outflow over the period of rainfall duration against allowable discharge was 0.5 in former simplified equation. But this research has found that the average outflow ratio depends on the storage methodology. In the case of the on-line storage method, the average outflow ratio is a function of the time of concentration of the catchments and rainfall duration, which ranged from 0.5~1.0. In the case of the off-line storage method, the average ratio is a function of peak discharge and allowable discharge except above time of concentration and rainfall duration, where its function value ranged from 1.0~2.0. When applying this equation to small catchment in Mokpo city, South Korea, we could easily calculate the relation curve between the storm-water detention volume and allowable discharge.

Study on Utilizing Resources in Environment-friendly City - Operation method of rain storage tank for using rainwater as multipurpose - (친환경 도시에서의 자원활용에 관한 연구 -빗물의 다목적 활용을 위한 빗물저장조의 운전방법 -)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.359-366
    • /
    • 2003
  • Ecological society and energy conservative systems has become a subject of world wide attention. To examine the technologies of such systems as resource recycling society, this study is proposed for using rainwater as energy source and water resources in urban area. Useful informations for planning of utilizing rainfall as energy source, water resources, emergency water and controlling flood are discussed with model systems in urban area. It is calculated that the rate of utilizing rainwater, amounts of utilizing rainwater, substitution rate of supply water, amounts of overflow rainwater according to rain storage tank volume. By applying the past weather data, The optimum volume of rain water storage was calculated as 200m$^3$ which mean no benefits according to the increase of storage tank volumes. For optimum planing and control method at the model system, several running method of rainwater storage tank was calculated. The optimum operating method was the using weather data as 3hours weather forecast.

Preliminary Studies on the Quality Changes of Eggplant as Influenced by Active Packaging

  • Zuo, Li;Seog, Eun-Ju;Lee, Jun-Ho;Rhim, Jong-Whan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.66-73
    • /
    • 2006
  • The effects of active packaging on the surface stiffness, mass, volume, density and weight changes of fresh as well as stored eggplant were studied at 11 and $25^{\circ}C$ for 10 days with active packaging material Type 1 and 2 and control. Mass, volume, and surface stiffness of eggplant decreased linearly throughout the storage period regardless of storage conditions; while the mass density showed a reverse trend in the ease of $11^{\circ}C$ storage. Reduction rate of mass, mass density and weight was observed minimum at $25^{\circ}C$ storage temperature with active packaging Type 1. The weight of eggplant decreased at a higher rate in the initial 4 days compared to that in the later period of storage regardless of storage temperature and type of packaging.

Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes (지하 열저장 공동의 종횡비와 저장용량에 따른 열성층화 및 열손실)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.308-318
    • /
    • 2013
  • Thermal stratification in heat stores is essential to improve the efficiency of energy storage systems and deliver more useful energy on demand. It is generally well known that the degree of thermal stratification in heat stores varies depending on the aspect ratio (the height-to-width ratio) and size of the stores. The present study aims to investigate the effect of the aspect ratio and storage volume of rock caverns for storing hot water on thermal stratification in the caverns and heat loss to the surroundings. Heat transfer simulations using a computational fluid dynamics code, FLUENT were performed at different aspect ratios and storage volumes of rock caverns. The variation of thermal stratification with respect to time was examined using an index to quantify the degree of stratification, and the heat loss to the surroundings was evaluated. The results of the numerical simulations demonstrated that the thermal stratification in rock caverns was improved by increasing the aspect ratio, but this effect was not remarkable beyond an aspect ratio of 3-4. When the storage volume of rock caverns was large, a higher thermal stratification was maintained for a relatively longer time compared to caverns with a small storage volume, but the difference in thermal stratification between the two cases tended to decrease as the aspect ratio became larger. In addition, the numerical results showed that the heat loss to the surrounding rock tended to increase with an increase in aspect ratio because the surface area of rock caverns increased as the aspect ratio became larger. The total heat loss from multiple small caverns with a reduced storage volume per cavern was larger compared to a single cavern with the same total storage volume as that of the multiple caverns.