• Title/Summary/Keyword: Storage Temperature

Search Result 4,417, Processing Time 0.03 seconds

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

Analysis of PCM Wallboards Design Parameters using Dynamic Energy Simulation (동적 에너지 시뮬레이션을 이용한 PCM보드의 설계변수 분석에 관한 연구)

  • Lee, Jin-Uk;An, Sang-Min;Kim, Taeyeon;Lee, Seung-Bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.97-104
    • /
    • 2012
  • A phase-change material is a substance with a high heat of fusion which, melting and freezing at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid. Therefore, PCMs are classified as latent heat storage (LHS) units. The purpose of this study is to analyze PCM wallboard design parameters using dynamic energy simulation. Among the factors of PCM, melting temperature, latent heat, phase change range, thermal conductivity are very important element to maximize thermal energy storage. In order to analyze these factors, EnergyPlus which is building energy simulation provided by department of energy from the U.S is used. heat balance algorithm of energy simulation is conduction finite difference and enthalpy-temperature function is used for analyzing latent heat of PCM. The results show that in the case of melting temperature, the thermal energy storage could be improved when the melting temperature is equal to indoor surface temperature. It seems that when the phase change range is wide, PCM can store heat at a wide temperature, but the performance of heat storage is languished.

Experimental Study on the Effect of a Metal Storage Cask and Openings on Flame Temperature in a Compartment Fire

  • Bang, Kyoung-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.395-405
    • /
    • 2020
  • Compartment fire tests were performed using kerosene and Jet A-1 as fire sources to evaluate the relationship between flame temperature and opening size. The tests were performed for a fire caused by the release of kerosene owing to vehicle impact, and for a fire caused by the release of Jet-A-1 owing to airplane collision. The compartment fire tests were performed using a 1/3-scale model of a metal storage cask when the flame temperature was deemed to be the highest. We found the combustion time of Jet-A-1 to be shorter than that of kerosene, and consequently, the flame temperature of Jet-A-1 was measured to be higher than that of kerosene. When the opening was installed on the compartment roof, even though the area of the opening was small, the ventilation factor was large, resulting in a high flame temperature and long combustion. Therefore, the position of the opening is a crucial factor that affects the flame temperature. When the metal storage cask was stored in the compartment, the flame temperature decreased proportionally with the energy that the metal storage cask received from the flame.

Thermal Conductivity Effect of Heat Storage Layer using Porous Feldspar Powder (다공질 장석으로 제조한 축열층의 열전도 특성)

  • Kim, Sung-Wook;Go, Daehong;Choi, Eun-Kyeong;Kim, Sung-Hwan;Kim, Tae-Hyoung;Lee, Kyu-Hwan;Cho, Jinwoo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.159-170
    • /
    • 2017
  • The temporal and spatial temperature distribution of the heat storage mortar made of porous feldspar was measured and the thermal properties and electricity consumption were analyzed. For the experiment, two real size chambers (control model and test model) with hot water pipes were constructed. Two large scale models with hot water pipes were constructed. The surface temperature change of the heat storage layer was remotely monitored during the heating and cooling process using infrared thermal imaging camera and temperature sensor. The temperature increased from $20^{\circ}C$ to $30^{\circ}C$ under the heating condition. The temperature of the heat storage layer of the test model was $2.0-3.5^{\circ}C$ higher than the control model and the time to reach the target temperature was shortened. As the distance from the hot water pipe increased, the temperature gap increased from $4.0^{\circ}C$ to $4.8^{\circ}C$. The power consumed until the surface temperature of the heat storage layer reached $30^{\circ}C$ was 2.2 times that of the control model. From the heating experiment, the stepwise temperature and electricity consumption were calculated, and the electricity consumption of the heat storage layer of the test model was reduced by 66%. In the cooling experiment, the surface temperature of the heat storage layer of the test model was maintained $2^{\circ}C$ higher than that of the control model. The heat storage effect of the porous feldspar mortar was confirmed by the temperature experiment. With considering that the time to reheat the heat storage layer is extended, the energy efficiency will be increased.

Storage of laboratory animal blood samples causes hemorheological alterations : Inter-species differences and the effects of duration and temperature

  • Nemeth, Norbert;Baskurt, Oguz K.;Meiselman, Herbert J.;Kiss, Ferenc;Uyuklu, Mehmet;Hever, Timea;Sajtos, Erika;Kenyeres, Peter;Toth, Kalman;Furka, Istvan;Miko, Iren
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • Hemorheological results may be influenced by the time between blood sampling and measurement, and storage conditions (e.g., temperature, time) during sample delivery between laboratories may further affect the resulting data. This study examined possible hemorheological alterations subsequent to storage of rat and dog blood at room temperature ($22^{\circ}C$) or with cooling ($4{\sim}10^{\circ}C$) for 2, 4, 6, 24, 48 and 72 hours. Measured hemorheological parameters included hematological indices, RBC aggregation and RBC deformability. Our results indicate that marked changes of RBC deformability and of RBC aggregation in whole blood can occur during storage, especially for samples stored at room temperature. The patterns of deformability and aggregation changes at room temperature are complex and species specific, whereas those for storage at the lower temperature range are much less complicated. For room temperature storage, it thus seems logical to suggest measuring rat and dog cell deformability within 6 hours; aggregation should be measured immediately for rat blood or within 6 hours for dog blood. Storage at lower temperatures allows measuring EI up to 72 hours after sampling, while aggregation must be measured immediately, or if willing to accept a constant decrease, over 24~72 hours.

Experimental Study on the Performance Characteristic in Underwater Harvest-Type Ice Storage System (수중 빙제조형 빙축열시스템의 성능특성 특성)

  • Jang, Yong-Sik;Lee, Ho-Saeng;Choi, In-Su;Kim, Jae-Dol;Kim, Eun-Pil;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.298-303
    • /
    • 2001
  • A fundamental study on the under water harvest-type ice storage system and its temperature characteristics in ice storage system was performed experimentally. The experiments were conducted by changing the inlet refrigerant temperature of an evaporator to analyzing the thermal fluid motion inside the ice storage tank. From the experimental results, the cold storage characteristics were investigated by measuring the axial and radial temperature variations inside the ice storage tank with respect to the inlet and outlet refrigerant temperatures of an evaporator. In case of the under water harvest-type ice storage system, thermal fluid. motion inside the ice storage tank was shown differently in comparison with that of other ice storage systems. During the cooling storage process, there was no supercooling phenomenon in the ice storage tank. These results show the characteristic of this system and the possibility of application to other fields.

  • PDF

Experiments on Operation Characteristics of In-Water Harvest-Type Ice Storage System (수중 하베스트형 빙축열 시스템의 운전특성 실험)

  • Choe, In-Su;Kim, Jae-Dol;Yun, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.653-659
    • /
    • 2001
  • This paper is concerned with the development of a new method for making and separating ice in-water and saving floated ice by installing an evaporation panel in an ice storage tank. The new method shows very good heat transfer efficiency than that of the convectional method. It is because the evaporation panel is directly contacted with water in the storage tank. The experiments were performed by varying inlet and outlet refrigerant temperatures of its evaporator. From the experimental results, the operating characteristics of in-water harvest-type ice storage system were investigated by measuring temperature and pressure at each point of the ice storage system and power required to operating compressor respect to the changes of the inlet and outlet refrigerant temperature of evaporator. It can be think that defrost frequency decreased and heavy ice created as the refrigerant temperature of evaporator outlet and defrost setting temperature is low so gotten result can effect to release efficiency. Also, consumption power, condensing heat quantity, refrigerating capacity and performance efficiency decreased as time goes by. Therefore, these results provide the basic data for system optimization, performance improvement and the possibility of application to other fields.

Texture Profile Analysis of Acorn Flour Gels (도토리묵의 물리적 특성)

  • Kim, Young-A;Rhee, Hei-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.345-349
    • /
    • 1985
  • The textural properties of acorn flour gels were investigated with the variations in the concentraction, storage time and storage temperature by the use of Instron Universal Testing Machine. The experimental design was $3^3$ factorial experiment. TPA curves of acorn flour gels showed two sharp peaks in the first bite and no negative peak. The hardness and brittleness of acorn flour gels were very significantly affected by concentration, storage time and storage temperature. For the height difference between first peak and second peals, the main effects for concentration and storage temperature were very significant and the main effect for storage time was not negligible. For bend, the effect of concentration was more significant than the effect of storage temperature, and storage time effect was negligible. Springiness was affected only by the concentration.

  • PDF

The Use of Fungal Inoculants in the Ensiling of Potato Pulp: Effect of Temperature and Duration of Storage on Silage Fermentation Characteristics

  • Okine, A;Aibibula, Y.;Hanada, M.;Okamoto, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.214-219
    • /
    • 2007
  • A $3{\times}3$ factorial design experiment was conducted to investigate the effect of temperature and duration of storage on the fermentation quality of potato pulp ensiled with two fungal inoculants under laboratory conditions. The inoculants, Rhizopus oryzae (R) and Amylomyces rouxii (A) were each added to potato pulp material to contain at least $1{\times}10^6$ CFU/g fresh matter, and silages without additives served as controls. The silages were stored under three temperature regimes; 4, 12 and $25^{\circ}C$. Three silos per treatment from every temperature regime were opened on days 7, 24 and 40 days after ensiling to investigate treatment effects on fermentation quality, starch and sugar concentrations. Increase in temperature and duration of storage had a positive significant effect (p<0.01) on the fermentation quality of potato pulp silage (PPS). The inoculants had little effect (p>0.05) on the fermentation quality of the silages. Sugar concentration in the silages decreased with increase in temperature (p<0.01) but increased (p<0.05) with progression of duration of storage. The fungal inoculants had no effect on starch degradation in PPS. The results suggest that storage temperature and duration of storage are more important in determining the rate of fermentation than addition of the fungal inoculants in PPS.

The Effect of Packaging and Storage Temperature on Quality Changes of 'White Dadagi' Cucumber (포장과 저장온도가 '백다다기' 오이 선도에 미치는 영향)

  • Lee, Jung-Soo;Kim, Gibin;Kim, Hayeon;Jeong, DaHye;Chei, Da Kyoung;Chea, Ye Rim;Park, Me Hea;Jang, Min Sun;Hong, Yuun Pyo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.115-121
    • /
    • 2021
  • The evaluation of package temperature for fresh preservation of cucumber was investigated. The fresh cucumber is available in markets of Korea during whole seasons, for the help of farmer, distributor and consumer. Cucumbers were stored within cardboard boxes packaging covered with low density polyethylene (LDPE) at different temperatures (5, 10, 15 and 20℃). Changes in weight loss, hue angle, firmness, moisture content and general appearance (shape of cucumber) were investigated during storage of cucumbers. General appearance index with non-packaging decreased more than with LDPE film packaging at 5℃ and 10℃. During storage of cucumbers, general appearance index as freshness showed packaging effect at low temperature than room temperature. In the fresh weight loss, the packaged cucumbers were less reduced than that of the non-packaging ones. At color change, Hue angle of cucumber stored within low temperature with film packaging decreased gradually during storage. However remarkable change in hue angle were observed in cucumber within LDPE film packaging treatments of 15℃ and 20℃ storage. The effect of hue angle with packaging appears differently depending on the storage temperature conditions. The firmness and moisture content of cucumber flesh were not affected by packaging and storage temperature. In this experiment, cucumbers packaged with LDPE film at 5℃ and 10℃ were the most desirable for extending the quality. These results suggest that packaging of low temperature treatments in combination could be effective in prolonging the shelf life of cucumber.