• Title/Summary/Keyword: Storage System

Search Result 6,977, Processing Time 0.033 seconds

A SAN Optimization Scheme for High-Performance Storage System (고성능 저장장치를 위한 SAN최적화기법)

  • Lee, In-Seon
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.379-388
    • /
    • 2014
  • We noted that substituting hard disk with high-performance storage device on SAN did not immediately result in getting high performance. Investigating the reason behind this leaded us to propose optimization schemes for high-performance storage system. We first got rid of the latency in the I/O process which is unsuitable for the high-performance storage device, added parallelism on the storage server, and applied temporal merge to Superhigh speed network protocol for improving the performance with small random I/O. The proposed scheme was implemented on the SAN with high-performance storage device and we verified that there were about 30% reduction on the I/O delay latency and 200% improvement on the storage bandwidth.

The Experimental Research for the Use Characteristics of the Passive and Active type Domestic Solar Hot Water Systems (자연형 및 설비형 태양열 온수기의 이용특성에 대한 실험적 연구)

  • Lee, Dong-Won;Kwak, Hee-You
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.82-88
    • /
    • 2013
  • There are the stirring test and drain test in the daily performance test to determine the thermal performance of a domestic solar hot water system. The drain test is a test that measures the discharge heating rate while drain the hot water from the top of the storage tank and supply the city water to the bottom of the tank. From the perspective of the user, this drain test is more effective than the stirring test. In this study, the thermal performance were compared through the drain test for a passive type and an active type domestic solar hot water systems consisting of the same storage tank and collectors. At this point, a passive type was used the horizontal storage tanks, and an active type was used vertical storage tank. In the drain test, when the hot water drained up to the reference hot water temperature, an active type which have vertical storage tank represents excellent daily performance than a passive type which have horizontal storage tank regardless of weather conditions. The reason for this is because the vertical storage tank is advantageous to thermal stratification in the tank. After the drain test, the residual heat for the horizontal storage tank was much more than the vertical storage tank, but in the next day the amount of discharged heat were less than the those of vertical storage tank neither. Thus, the solar water heating system which have horizontal storage tank should be adopted preheating control method rather than separate using control method when connected with auxiliary heat source device.

Development of scalable big data storage system using network computing technology (네트워크 컴퓨팅 기술을 활용한 확장 가능형 빅데이터 스토리지 시스템 개발)

  • Park, Jung Kyu;Park, Eun Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1330-1336
    • /
    • 2019
  • As the Fourth Industrial Revolution era began, a variety of devices are running on the cloud. These various devices continue to generate various types of data or large amounts of multimedia data. To handle this situation, a large amount of storage is required, and big data technology is required to process stored data and obtain accurate information. NAS (Network Attached Storage) or SAN (Storage Area Network) technology is typically used to build high-speed, high-capacity storage in a network-based environment. In this paper, we propose a method to construct a mass storage device using Network-DAS which is an extension technology of DAS (Direct Attached Storage). Benchmark experiments were performed to verify the scalability of the storage system with 76 HDD. Experimental results show that the proposed high performance mass storage system is scalable and reliable.

DC Traction Regenerative Energy Storage Devices using Super-capacitor (슈퍼 커패시터를 이용한 직류철도 회생에너지 저장장치)

  • Kim, Jong-Yoon;Jung, Doo-Yong;Jang, Su-Jin;Lee, Byoung-Kuk;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.247-256
    • /
    • 2008
  • Regenerative energy generated by regenerative braking of DC traction can cause the system malfunction or damage to the rectifier, or malfunction of the power conversion device in power supply system by DC Line voltage rise in feeder line. Regenerative energy storage system using super capacitor is one of the ways to stabilize DC line voltage. In this paper, energy storage system of DC traction system using super-capacitor bank is implemented and using the field measurement data of the station N and the station S on the Line 2, the operation characteristics of line voltage caused by regenerative energy of electric trains are verified. Also, charge/discharge characteristics of super capacitor are verified as well. Thus, we can verify the operation characteristics of super-capacitor bank for regenerative energy storage system installed in DC Traction. And if we can use field measurement data of DC line voltage, we have obtained cost reduction. The stabilization of the system will be improved by measuring the operation characteristics of regenerative energy storage system in certain section operated by DC traction and predicting the capacity and lifetime of super-capacitor.

A Study on the District Community Cooling System using LNG Cold Energy (LNG 냉열이용 지역집단 냉방시스템에 대한 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.27-30
    • /
    • 2010
  • This paper presents the system design process of district community cooling system using LNG cold energy. The newly developed LNG cooling system includes several heat exchangers, LNG storage tank, thermal mass storage tank, several cold energy storage tanks, gas air-conditioners, compressors, constant pressure regulators, cold energy and hot energy supply pipes. In addition, the gas air-conditioner system is installed to supply not sufficient cold energy due to low level of city gas consumptions during a summer period. This system design is very effective and safe to supply cold energy mass of fresh air by exchanging two thermal masses of an air and 200kcal/kg cold energy of LNG. The district community cooling system with LNG cold energy does not produce CO2 and freon gases in the air.

Investigation of Ground Environment Around Underground Oil Storage Facilities Using the Envi-Cone Penetrometer System (환경콘에 의한 지하유류 저장시설주변 지반환경 조사)

  • 정하익;홍승서;김영진;홍성완;곽무영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.273-280
    • /
    • 2000
  • In recent years there has been a steady increase in geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation of contaminant in the ground. There are many techniques such as geophysical, drilling, sampling, md pushing techniques for investigation of contaminated ground. The most rapidly developing site characterization techniques for geoenvironmental purposes involve direct push technology, that is, penetration tests. The purpose of this study investigated underground oil storage tanks(USTs) using the envi-cone penetrometer system. The electrical resistivity sensor, pH sensor, ORP sensor, and thermometer are installed in envi-cone penetrometer system. This envi-cone penetrometer system provides a continuous profile of measurements, and it is rapid, repeatable, reliable and cost effective for investigation of contaminated ground surrounding the underground oil storage tanks.

  • PDF

Simulation of the Wind Power Generation System with Energy Storage System (전기저장 장치가 포함된 풍력발전 시스템에 대한 시뮬레이션)

  • Oh, Si-Doek;Lim, Hee-Sue;Seo, Seok-Ho;Kim, Ki-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • The wind power generation systems have a fluctuating or intermittent power output due to the variability of the wind speed. The amount of wind generation which can be connected to the grid without causing voltage stability problems is limited. In this study, the simulation of the wind power generation including energy storage system were performed to reduce the fluctuation of wind power output and to obtain the optimal operation planning of energy storage system.

  • PDF

Shore power to ships and offshore plants with flywheel energy storage system

  • Jeong, Hyun-Woo;Ha, Yun-Su;Kim, Yoon-Sik;Kim, Chul-Ho;Yoon, Kyoung-Kuk;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.771-777
    • /
    • 2013
  • This paper describes a study of major shipyard's electrical network and simulation of applying flywheel energy storage system on the electrical network at shipyard for shore-power to ships and offshore plants in order to save fuel consumption on engines, mitigate voltage sags, and prevent blackout due to pulsed load and fault, resulting in reduction of air emission into atmosphere. The proposed energy recycling method with FESS (Flywheel Energy Storage System) can be applied for electrical power system design of heavy cranes at shipyards.

Design of an Aquifer Thermal Energy Storage System (I) : Isothermal Analysis (지하대수층을 이용한 축열시스템의 설계 (I) : 등온해석)

  • Song, Y.K.;Lee, K.S.;Lee, T.H.;Kim, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.102-110
    • /
    • 1993
  • An isothermal analysis was conducted to develop the design tool of an aquifer thermal energy storage system. Taejeon aquifer was chosen for the analysis, and the variation of FRE(Fluid Recovery Efficiency) with respect to the aquifer natural velocity and thermal load were investigated. The analysis results were compared with those of ATESSS(Aquifer Thermal Energy Storage System Simulator) and agreed within 2% of discrepancy. It is recommended, based on the result of this study, that the system may be suitable for a large volume of hot or chill thermal energy storage system, such as for district heating or cooling.

  • PDF

A genetic algorithm for determining the optimal operating policies in an integrated-automated manufacturing system (통합자동생산시스템에서 최적운영방안 결정을 위한 유전자 알고리즘의 개발)

  • 임준묵
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.05a
    • /
    • pp.145-153
    • /
    • 1999
  • We consider a Direct Input Output Manufacturing System(DIOMS) which has a munber of machine centers placed along a built-in Automated Storage/Retrieval System(AS/RS). The Storage/Retrieval (S/R) machine handles parts placed on pallets for the machine centers located at either one or both sides of the As/Rs. This report studies the operational aspect of DIOMS and determines the optimal operating policy by combining computer simulation and genetic algorithm. The operational problem includes: input sequencing control, dispatching rule of the S/R machine, machine center-based part type selection rule, and storage assignment policy. For each operating policy, several different policies are considered based on the known research results. In this report, using the computer simulation and genetic algorithm we suggest a method which gives the optimal configuration of operating policies within reasonable computation time.

  • PDF