• Title/Summary/Keyword: Storage Power Flow Controller

Search Result 14, Processing Time 0.03 seconds

The Implementation of Storage Type Power Flow Controller using Battery Storage

  • Leung, K.K.;Sutanto, D.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • This paper describes the implementation of a Storage Power Flow Controller (SPFC) connected to the grid which can provide concomitant benefits associated with a Unified Power Flow Controller while at the same time providing several other very important benefits to power system operation such as, load leveling dynamic voltage stability inprovement, harmonic compensation and power factor correction. This Storage power Flow Controller (SPFC) was implemented using real time signal processors, three-phase inverter(s) and battery bank which can provide improved power system operation and control, added system security and reduced power system losses.

  • PDF

Proposed Distribution Voltage Control Method for Connected Cluster PV Systems

  • Lee, Kyung-Soo;Yamaguchi, Kenichiro;Kurokawa, Kosuke
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.286-293
    • /
    • 2007
  • This paper proposes a distribution voltage control method when a voltage increase condition occurs due to reverse power flow from the clustered photovoltaic (PV) system. This proposed distribution voltage control is performed a by distribution-unified power flow controller (D-UPFC). D-UPFC consists of a hi-directional ac-ac converter and transformer. It does not use any energy storage component or rectifier circuit, but it directly converts ac to ac. The distribution model and D-UPFC voltage control using the ATP-EMTP program were simulated and the results show the voltage increase control in the distribution system.

Power Quality Control of Hybrid Wind Power Systems using Robust Tracking Controller

  • Ko, Heesang;Yang, Su-Hyung;Lee, Young Il;Boo, Chang-Jin;Lee, Kwang Y.;Kim, Ho-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.688-698
    • /
    • 2015
  • This paper presents a modeling and a controller design for a hybrid wind turbine generator, especially with an operating mode of battery energy-storage system and a dumpload that contribute to the frequency control of the system while diesel-synchronous unit is not in operation. The proposed control scheme is based on a robust tracking controller, which takes an account of system uncertainties due to the wind flow and load variations. In order to provide robustness for system uncertainties, the range of operation is partitioned into three operating conditions as sub-models in the controller design. In the simulation study, the proposed robust tracking controller (RTC) is compared with the conventional proportional-integral (PI) controller. Simulation results show that the effectiveness of the RTC against disturbances caused by wind speed and load variation. Thus, better quality of the hybrid wind power system is achieved.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

Real and Reactive Power Control of Battery Energy Storage System (전지전력저장시스템의 유효 및 무효전력제어)

  • Kim, Dae-Won;Choi, Joon-Ho;Jung, Sung-Kyo;Kim, Jae-Chul;Choi, Byoung-Su
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1189-1191
    • /
    • 1999
  • This paper deals with the real and reactive power control of BESS(Battery Energy H Storage System) interconnected to power system. The real and reactive power control of proposed customer side BESS are performed by controlling the amplitude and the phase of inverter output voltage via power flow equation. Also in order to control the amplitude and phase of output voltage of proposed BESS, single-pulse width control method is used. The BESS and controller is implemented and the active and reactive power control is simulated by using the PSCAD/EMTDC simulation program.

  • PDF

Design and Test of ESS DC-DC Converter using Zinc-Bromine Redox Flow Battery for Stand-alone Microgrid (Zinc-Bromine 레독스 플로우 배터리를 이용한 독립형 마이크로그리드 ESS DC-DC 컨버터 설계 및 실증)

  • Choe, Jung-Muk;Ra, Sun-Gil;Han, Dong-Hwa;Lee, Yong-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.106-115
    • /
    • 2014
  • This paper proposes ESS DC-DC Converter using Redox Flow Battery (RFB) for stand-alone microgrid. Price, safety, expandability and dynamics are crucial in ESS. Reports show that Zinc-bromine (ZnBr) RFB is the best choice in ESS. Simple electrical ZnBr RFB model is obtained from charging test. DC-DC converter Inductor current-DClink Voltage model is proposed for the DC microgrid. For the controller design in z-domain, the K-factor method is by considering nature of the digital controller. The control performance has been verified with simulation and hardware experiments. Lastly 10kW DC microgrid using RFB test result is shown.

Experimental Realization of Matrix Converter Based Induction Motor Drive under Various Abnormal Voltage Conditions

  • Kumar, Vinod;Bansal, Ramesh Chand;Joshi, Raghuveer Raj
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • While the matrix converter has many advantages that include bi-directional power flow, a size reduction, a long lifetime, and sinusoidal input currents, it is vulnerable to the input voltage disturbances, because it directly exchanges the input voltage to the output voltage. So, in this paper, a critical evaluation of the effect of various abnormal voltage conditions like unbalanced power supply, balanced non-sinusoidal power supply, input voltage sags and short time blackout of power supply on matrix converter fed induction motor drives is presented. The operation under various abnormal conditions has been analyzed. For this, a 230V, 250VA three phase to three phase matrix converter (MC) fed induction motor drive prototype is implemented using DSP based controller and tests have been carried out to evaluate and improve the stability of system under typical abnormal conditions. Digital storage oscilloscope & power quality analyzer are used for experimental observations.

Development of the 1kW Class Regenerative Fuel Cell for Ground Simulator of Regeneration Electric Power System (재생전원 시스템의 지상 시뮬레이터용 1kW급 재생형 연료전지 개발)

  • Kim, Hyung-Mo;Yang, Cheol-Nam;Hong, Byung-Sun;Park, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1117-1122
    • /
    • 2006
  • The PEM type regenerative fuel cell(RFC) for the ground simulator of the regeneration electric power system has been designed, manufactured, and tested. In this paper, the designing and manufacturing procedures of the RFC were presented. Also, the performance test results were showed briefly. The RFC consists of PEM type stack, humidifier, pressure and flow control valve, storage tanks, pump and controller. The performance tests were carried out with stack and system performance tests. The performance targets are more than 50% stack efficiency, 1.5kW stack power, less 400W parasitic power in design condition. Most of the performances required are satisfied.

Hierarchical Control Scheme for Three-Port Multidirectional DC-DC Converters in Bipolar DC Microgrids

  • Ahmadi, Taha;Hamzeh, Mohsen;Rokrok, Esmaeel
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1595-1607
    • /
    • 2018
  • In this paper, a hierarchical control strategy is introduced to control a new three-port multidirectional DC-DC converter for integrating an energy storage system (ESS) to a bipolar DC microgrid (BPDCMG). The proposed converter provides a voltage-balancing function for the BPDCMG and adjusts the states of charge (SoC) of the ESS. Previous studies tend to balance the voltage of the BPDCMG buses with active sources or by transferring power from one bus to another. Furthermore, the batteries available in BPDCMGs were charged equally by both buses. However, this power sharing method does not guarantee efficient operation of the whole system. In order to achieve a higher efficiency and lower energy losses, a triple-layer hierarchical control strategy, including a primary droop controller, a secondary voltage restoration controller and a tertiary optimization controller are proposed. Thanks to the multi-functional operation of the proposed converter, its conversion stages are reduced. Furthermore, the efficiency and weight of the system are both improved. Therefore, this converter has a significant capability to be used in portable BPDCMGs such as electric DC ships. The converter modes are analyzed and small-signal models of the converter are extracted. Comprehensive simulation studies are carried out and a BPDCMG laboratory setup is implemented in order to validate the effectiveness of the proposed converter and its hierarchical control strategy. Simulation and experimental results show that using the proposed converter mitigates voltage imbalances. As a result, the system efficiency is improved by using the hierarchical optimal power flow control.

Quantitative Analysis and Comparisons between In-Phase Control and Energy-Optimized Control for Series Power Quality Controllers

  • Xinming, Hunag;Jinjun, Liu;Hui, Zhang
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.553-566
    • /
    • 2009
  • In-phase control and energy-optimized control are the two major control strategies proposed for series power quality controllers (SPQC). However quantitative analysis and comparison between these two control strategies is quite limited in previous publications. In this paper, an extensive quantitative analysis is carried out on these two control strategies through phasor diagram approach, and a detailed quantitative comparison is conducted accordingly. The load current is used as the reference phasor, and this leads to a simpler and clearer phasor diagram for the quantitative relationship. Subsequently detailed analysis of SPQC using in-phase control and energy-optimized control are provided respectively, under different modes both for under voltage/voltage sag and for over voltage/voltage swell. The closed form analytic expressions and the curves describing SPQC compensation characteristics are obtained. The detailed system power flow is figured out for each mode, and the detailed quantitative comparison between the two control strategies is then carried out. The comparison covers several aspects of SPQC, such as required compensating voltage magnitude, required capacity of energy storage component, and maximal ride-through time. In the end, computer simulation and prototype experimental results are shown to verify the validity of all the analysis and the result of the comparison.