• 제목/요약/키워드: Storage Planning

검색결과 414건 처리시간 0.029초

특허정보를 활용한 CCS(CO2 Capture and Storage) 기술동향 분석 (Technology Trend Analysis of CO2 Capture and Storage by Patent Information)

  • 이수진;이윤석;이정구;홍순직;이중범
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.289-297
    • /
    • 2015
  • As recognized by all scientific and industrial groups, carbon dioxide($CO_2$) capture and storage(CCS) could play an important role in reducing greenhouse gas emissions. Especially carbon capture technology by dry sorbent is considered as a most energy-efficient method among the existing CCS technologies. Patent analysis has been considered to be a necessary step for identifying technological trend and planning technology strategies. This paper is aimed at identifying evolving technology trend and key indicators of dry sorbent from the objective information of patents. And technology map of key patents is also presented. In this study the patents applied in korea, japan, china, canada, US, EU from 1993 to 2013 are analyzed. The result of patent analysis could be used for R&D and policy making of domestic CCS industry.

Landuse and Landcover Change and the Impacts on Soil Carbon Storage on the Bagmati Basin of Nepal

  • Bastola, Shiksha;Lim, Kyuong Jae;Yang, Jae Eui;Shin, Yongchul;Jung, Younghun
    • 한국지반환경공학회 논문집
    • /
    • 제20권12호
    • /
    • pp.33-39
    • /
    • 2019
  • The upsurge of population, internal migration, economic activities and developmental works has brought significant land use and land cover (LULC) change over the period of 1990 and 2010 in the Bagmati basin of Nepal. Along with alteration on various other ecosystem services like water yield, water quality, soil loss etc. carbon sequestration is also altered. This study thus primary deals with evaluation of LULC change and its impact on the soil carbon storage for the period 1990 to 2010. For the evaluation, InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Carbon model is used. Residential and several other infrastructural development activities were prevalent on the study period and as a result in 2010 major soil carbon reserve like forest area is decreased by 7.17% of its original coverage in 1990. This decrement has brought about a subsequent decrement of 1.39 million tons of carbon in the basin. Conversion from barren land, water bodies and built up areas to higher carbon reserve like forest and agriculture land has slightly increased soil carbon storage but still, net reduction is higher. Thus, the spatial output of the model in the form of maps is expected to help in decision making for future land use planning and for restoration policies.

수소 전주기 경제성 분석 프로그램 개발 (Economic Analysis Program Development for Assessment of Hydrogen Production, Storage/Delivery, and Utilization Technologies)

  • 김수현;유영돈;박혜민
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.607-615
    • /
    • 2022
  • In this study, economic analysis program was developed for economic evaluation of hydrogen production, storage/delivery, and utilization technologies as well as overseas import of hydrogen. Economic analysis program can be used for the estimation of the levelized cost of hydrogen for hydrogen supply chain technologies. This program include five hydrogen production technology on steam methane reforming and water electrolysis, two hydrogen storage technologies (high compressed gas and liquid hydrogen storage), three hydrogen delivery technologies (compressed gas delivery using tube trailer, liquid hydrogen, and pipeline transportation) and six hydrogen utilization technologies on hydrogen refueling station and stationary fuel cell system. In the case of overseas import hydrogen, it was considered to be imported from five countries (Austraila, Chile, India, Morocco, and UAE), and the transportation methods was based on liquid hydrogen, ammonia, and liquid organic hydrogen carrier. Economic analysis program that was developed in this study can be expected to utilize for planning a detailed implementation methods and hydrogen supply strategies for the hydrogen economy road map of government.

VALUATION OF A MULTI-STAGE RAINWATER HARVESTING TANK CONSTRUCTION USING A REAL OPTION APPROACH

  • Byungil Kim;Hyoungkwan Kim;SangHyun Lee
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.386-389
    • /
    • 2013
  • Under climate change and urbanization, rainwater harvesting (RWH) systems are emerging as an alternative source of water supply because of growing concern about water sustainability. RWH systems can satisfy the various watering needs and provide the environmental benefits of lessening the damages from flood, drought, and runoff. The economic success of a RWH system is vitally concerned with the determination of the design capacity of storage tank to be built in the system. The design capacity is determined by the factors of average annual rainfall, period of water scarcity, and water price during the whole life-cycles. Despite the high uncertainties inherent in these factors, the current engineering design of RWH system construction often assumes that storage tanks should be built all at once. This assumption implicitly ignores the managerial flexibility in responds to the future as new information comes out-the right to build storage tanks stage by stage depending on the evolution of demand. This study evaluates the value of a multistage storage tank construction using a real option approach. A case study involving a typical RWH system construction in Jeonju, the Republic of Korea is conducted. The managerial flexibility obtained from the real option perspective allows engineers to develop investment strategies to better cope with the issue of water sustainability.

  • PDF

「국가 CCS 종합추진계획」 이행점검 및 개선과제 도출 연구 (A Study on Implementation and Deriving Future Tasks of 「The Korean National CCS Master Action Plan」)

  • 조가비;조하영;박노언
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.237-247
    • /
    • 2016
  • Global warming caused by greenhouse gases is one of the foremost challenges in the international community. As an alternative to solve this problem, the importance of CCS (Carbon Capture and Storage) technology is increasing. However, due to the delay of European financial crisis recovery, some large-scale CCS projects were postponed. In turn, large-scale CCS projects in South Korea have not been launched as originally planned. Given these situations, it is important to review the latest R&D activities related to CCS in South Korea, and then adjust relevant national policy accordingly. The purpose of this study is to identify policy issues for the effective promotion of CCS technology in South Korea. Following the analysis of recent global trend on CCS policy, we evaluated the results and achievements from national CCS projects, which had been listed under the "Korean National CCS Master Action Plan (2010)". Especially, we tried to review the attainability for the original goal of each project. Through the present study, we identified the current status of CCS technology in South Korea and suggested efficient ways to be taken in order to increase efficiency in implementing national CCS policy in the future.

거주 후 평가를 통한 국가지정 입원치료병상 시설 개선 방향 도출에 관한 연구 (A Study on the direction for Facility Improvement of Nationally Designated Negative Pressure Isolation Ward through Post Occupancy Evaluation)

  • 정다운;권순정
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제27권3호
    • /
    • pp.39-49
    • /
    • 2021
  • Purpose: The negative pressure isolation ward is a key facility in preparedness and response to infectious diseases. For the sustainable operation of the facility, appropriate facility improvement is required. The experience of medical staff responding to infectious diseases in the COVID-19 pandemic provides effective informations for facility planning. Methods: The post occupancy evaluation (POE) was conducted by interviewing medical staff who is working on Nationally designated negative pressure isolation ward in general hospital. Floor plan analysis was conducted before field surveys for identifying facility characteristic and spatial composition. After that, field surveys were conducted at 3 hospitals, and interviews and fieldwork were conducted together. Results: It is necessary to increase the standard size of ward area from 15m2 to 20m2. The size of the doffing room has to be planned for accommodation of two or more people. Equipment storage, clean storage and waste storage also should be properly planned. There were almost no problems with the circulation in the ward. There was not enough space for medical staff. Implications: For a sustainable and safe negative pressure isolation ward planning, it is necessary to exploit learning from the medical staffs who have many experiences of coping with infectious diseases.

Differences in Ethylene and Fruit Quality Attributes during Storage in New Apple Cultivars

  • Yoo, Jingi;Lee, Jinwook;Kwon, Soon-Il;Chung, Kyeong Ho;Lee, Dong Hoon;Choi, In Myung;Mattheis, James P.;Kang, In-Kyu
    • 원예과학기술지
    • /
    • 제34권2호
    • /
    • pp.257-268
    • /
    • 2016
  • Physiological characteristics of five new apple cultivars from the Korean apple breeding program were evaluated as a function of harvest time and storage after harvest. Internal ethylene concentration (IEC), flesh firmness, soluble solids concentration (SSC), and titratable acidity (TA) were measured in 'Summer Dream', 'Summer King', 'Green Ball', 'Picnic', and 'Hwangok' apples at harvest, during shelf life at $20^{\circ}C$, and one day after cold storage at $0.5^{\circ}C$ in air. IEC increased during shelf life in 'Summer Dream', 'Summer King', and 'Green Ball' but not in 'Picnic' or 'Hwangok', regardless of harvest time. Flesh firmness decreased towards harvest time and decreased gradually with time in cold storage only in the former three cultivars. In turn, IEC increased during cold storage in the first three cultivars but not for the last two cultivars, irrespective of harvest time. Changes in SSC and TA did not consistently relate to harvest time or storage period but TA tended to decrease as IEC increased. Furthermore, IEC was negatively correlated with flesh firmness except in the 'Green Ball' cultivar but the significance level was much greater in 'Summer Dream' and 'Summer King' (p < 0.0001) than in 'Picnic' (p < 0.01) or 'Hwangok' (p < 0.05) cultivars. Flesh firmness was positively correlated with TA in the first three cultivars but not in the last two cultivars. Overall, the results indicate that cultivars for which IEC increased after harvest had reduced flesh firmness and TA after storage.

도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정 (Estimation of Storage Capacity for CSOs Storage System in Urban Area)

  • 조덕준;이정호;김명수;김중훈;박무종
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Improvement of the Planting Method to Increase the Carbon Reduction Capacity of Urban Street Trees

  • Kim, Jin-Young;Jo, Hyun-Kil;Park, Hye-Mi
    • 인간식물환경학회지
    • /
    • 제24권2호
    • /
    • pp.219-227
    • /
    • 2021
  • Background and objective: Urban street trees play an important role in carbon reduction in cities where greenspace is scarce. There are ongoing studies on carbon reduction by street trees. However, information on the carbon reduction capacity of street trees based on field surveys is still limited. This study aimed to quantify carbon uptake and storage by urban street trees and suggest a method to improve planting of trees in order to increase their carbon reduction capacity. Methods: The cities selected were Sejong, Chungju, and Jeonju among cities without research on carbon reduction, considering the regional distribution in Korea. In the cities, 155 sample sites were selected using systematic sampling to conduct a field survey on street environments and planting structures. The surveyed data included tree species, diameter at breast height (DBH), diameter at root collar (DRC), height, crown width, and vertical structures. The carbon uptake and storage per tree were calculated using the quantification models developed for the urban trees of each species. Results: The average carbon uptake and storage of street trees were approximately 7.2 ± 0.6 kg/tree/yr and 87.1 ± 10.2 kg/tree, respectively. The key factors determining carbon uptake and storage were tree size, vertical structure, the composition of tree species, and growth conditions. The annual total carbon uptake and storage were approximately 1,135.8 tons and 22,737.8 tons, respectively. The total carbon uptake was about the same amount as carbon emitted by 2,272 vehicles a year. Conclusion: This study has significance in providing the basic unit to quantify carbon uptake and storage of street trees based on field surveys. To improve the carbon reduction capacity of street trees, it is necessary to consider planning strategies such as securing and extending available grounds and spaces for high-density street trees with a multi-layered structure.

저수지의 Storage-Yield에 관한 연구 (A Study on the Storage-Yield Relationship of Reseroir)

  • 이순탁;장인수
    • 물과 미래
    • /
    • 제18권3호
    • /
    • pp.253-264
    • /
    • 1985
  • 근본적으로 저수지의 Storage-Yield 관계를 해석하는 데는 두가지 관점이 있다. 가장 보편적인 관점은 필요한 수요량을 공급하기 위하여 저수지의 필요저수용량을 결정하는 것이다. 이런 형태의 문제는 저수지의 계획이나 초기 설계단계에서 보통 생긴다. 두 번째 관점은 주어진 저수용량에 대한 방류량의 결정이며, 이것은 최종 설계나 더 상세한 분석을 위한 현존 저수지의 재평가에서 자주 생긴다. 본 연구의 목적은 저수지의 설계나 운영을 위한 Storage-Yield 관계를 산정하는 현재의 방법론을 개선하는 것이다. 저수지의 Storage-Yield 관계를 해석하느 s가장 적합한 기법을 찾기 위하여 잔차누가곡선기법(Residual mass curve technique), 개선된 저류량기법(Low flow technique)과 TPM 기법(Transition probability matrix technique)이 검토되었다. 저수지의 Storage-Yield 관계를 해석하는데 있어서 홍천댐 건설예정지점의 1917∼1940년 월유입량 자료와 Thomas-Fiering 모델에 의해 모의 발생된 자료를 가지고 위의 세가지 기법을 상세히 검토하였다. 저수지의 Storage-Yield 관계를 폭넓게 검토한 결과, 잔차누가곡선기법과 저류량기법은 예비 설계에 타당하며, TPM 기법은 월별 혹은 계절별 수요변동을 고려할 수 있기 때문에 최종 설계에 타당한 기법임을 알 수 있다.

  • PDF