• Title/Summary/Keyword: Storage Heater

Search Result 80, Processing Time 0.024 seconds

An Experimental Study on the Performance of Cool Storage System using R141b Clathrate (R141b 포접화합물을 이용한 축냉시스템의 성능에 관한 실험적 연구)

  • Jung, I.S.;Kim, Y.G.;Lee, J.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.354-364
    • /
    • 1994
  • Experiments have carried out to investigate the effects of parameters, such as mass ratio of R141b-to-water, stirrer speed, brine inlet temperature, brine flowrate, and additives, on the performance of the cool storage system using R141b clathrate. The cool storage system in this experiment was composed of storage tank, refrigerator, and heater. The results show that the mass ratio of R141b-to-water, 1 : 3~1 : 3.5 gives the best performance and the stirring speed has optimum point as 600rpm. At this speed impeller Reynolds number is $1.01{\times}10^5$. The lower the inlet brine temperature and the highter the brine flowrate, the better performance. The addition of metal powder turned out to reduce the degree of supercooling. The supercooling reduction was proportional to the amount of the metal power. However when metal powder was added more than 0.1 wt%, there was no additional supercooling reduction. The surfactants shortened the time consumed for cool storage to the half of no surfactant added case.

  • PDF

Thermopiezoelectric Cantilever for Probe-Based Data Storage System

  • Jang, Seong-Soo;Jin, Won-Hyeog;Kim, Young-Sik;Cho, Il-Joo;Lee, Dae-Sung;Nam, Hyo-Jin;Bu, Jong. U.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • Thermopiezoelectric method, using poly silicon heater and a piezoelectric sensor, was proposed for writing and reading in a probe based data storage system. Resistively heated tip writes data bits while scanning over a polymer media and piezoelectric sensor reads data bits from the self-generated charges induced by the deflection of the cantilever. 34${\times}$34 array of thermopiezoelectric nitride cantilevers were fabricated by a single step wafer level transfer method. We analyzed the noise level of the charge amplifier and measured the noise signal. With the sensor and the charge amplifier 20mn of deflection could be detected at a frequency of 10KHz. Reading signal was obtained from the cantilever array and the sensitivity was calculated.

Thermo-Piezoelectric Read/Write Mechanisms for Probe-Based Data Storage

  • Nam, Hyo-Jin;Kim, Young-Sik;Lee, Sun-Yong;Jin, Won-Hyeog;Jang, Seong-Soo;Cho, Il-Joo;Bu, Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • In this paper, a thermo-piezoelectric mechanism with integrated heaters and piezoelectric sensors has been studied for low power probe-based data storage. Silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been developed to improve the uniformity of cantilevers. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. And, the $34\times34$ probe array integrated with CMOS circuits has been successfully developed by simple one-step bonding process. The process can simplify the process step and reduce tip wear using silicon nitride tip.

  • PDF

Freeze Protection for Passive Solar Water Heating System (자연순환형 태양열온수기 동파방지기술)

  • Kim, Jong-Hyun;Hong, Hi-Ki;Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.327-333
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and shortage of excessive electric power consumption. In the experimental device, hot water in storage tank was used to heat the outlet pipe from the tank if the pipe surface temperature falls lower than a set point. The cold water pipe to the storage tank was installed to directly contact the hot water pipe surface temperature rose by transferred heat.

Study on the Simulation of Heat Pump Heating and Cooling Systems to Hospital Building (병원 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구)

  • Choi, Young-Don;Han, Seong-Ho;Cho, Sung-Hwan;Kim, Du-Sung;Um, Chul-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller & heater.

Replication of High Density Patterned Media (고밀도 패턴드 미디어 성형에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

Development of Fuzzy Controller for Air Conditioning of Grain Bin (곡물빈용 공기조화장치의 퍼지제어기 개발)

  • 최영수;문대식;정종훈
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.137-143
    • /
    • 2002
  • Temperature and humidity are the most important factors and should be effectively controlled for the cold storage of graius. Fuzzy logic can be easily implemented to the MIMO(Multi-Input Multi-Output) control systems. For the cold storage in grain bin, fuzzy logic was applied to an air conditioning system. The capacities of the grain bin and the air conditioner are 80 tons and 30㎾, respectively. Also, the target values of temperature and relative humidity in outlet duct of the air conditioner were 8$\^{C}$ and 75%, respectively. In order to control temperature and relative humidity of air, a damper in inlet duct was manipulated for temperature control and a heater was used for humidity control. Temperature deviation and change of temperature deviation were used as input parameters for the fuzzy system. Humidity was only considered as a load. The experimental results showed that the controlled temperature of exhausted air was maintained at 8$\pm$2$\^{C}$. Relative humidity of the air was also controlled at the target relative humidity of 50∼80%.

Design and Manufacture of the air mixing system for supersonic ground test facility (초음속 지상추진시험설비의 공기 혼합시스템 설계 및 제작)

  • Lee, Yagn-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2008
  • Air mixing system which is composed of air pressure control system, hot pipe system and air mixer, is the facility for mixing hot air($1000^{\circ}C$, 10kg/s) from storage air heater (SAH) and decompressed air($20^{\circ}C$, 15kg/s) from high pressure air supply system. Air pressure control system reduce the pressure of the air, from 32MPa to 3.5 MPa and supply the decompressed air to air mixer. The hot pipe system supply hot air from SAH to air mixer which mix hot with the decompressed air from air pressure control system. Fully mixed air flow rate is 25kg/s and mixed temperature is up to $400^{\circ}C$. So, we can expand the operating envelop of the supersonic ground test facility to low Mach number and low altitude region.

  • PDF

Numerical Analysis on Melting Phenomena and Phase Interface Change of Frozen Urea-aqueous Solution by Electric Heater (전기 히터 방식의 동결 우레아 해동 현상 및 상경계면 이동에 대한 수치해석)

  • Woo, Seongmin;Choi, Byungchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2014
  • Urea-SCR system is the selective catalytic reduction to reduce nitrogen oxides ($NO_x$) emitted from diesel vehicles. The objective of this study is numerical analysis of 3-dimensional unsteady melting problems of frozen urea by using an electric heater. It can be applied to determine capacity of power with respect to time and the location of the urea suction pipe in urea storage tank. The study includes the change of liquid volume fraction, temperature profiles and a influence of natural convection by using the commercial software STAR-CCM+(v7.06). The accuracy of the numerical analysis is estimated by comparisons with experimental data. After validation, a numerical analysis for freezing urea is conducted with four different heating power. From the results, it was found that relation of velocity of phase interface and amount of melting urea by increasing heating power in a container. There is also a difference in trend between velocity of phase interface and amounts of melting urea because of effect of natural convection.

Measurement and Verification of Thermal Conductivity of Multilayer Thin Dielectric Film via Differential 3$\omega$ Method (차등 3$\omega$ 기법을 이용한 다층 유전체 박막의 열전도도 측정 및 검증)

  • Shin Sang-Woo;Cho Han-Na;Cho Hyung-Hee
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.254-259
    • /
    • 2005
  • In this study, measurement of thermal conductivity of multilayer thin dielectric film has been conducted via differential 3$\omega$ method. Also, verification of differential 3$\omega$ method has been accomplished with various proposed criteria. The target film for measurement is 300 nm silicon dioxide and this thin film is covered with various thicknesses of upper protective layer. The upper protective layer is inserted between the target film and the heater line for purpose of electrical insulator or anti-oxidation barrier since the target film may be a good electrical conductor or a well-oxidizing material. However, the verification of differential 3$\omega$ method has not been conducted. Thus we have shown that the measurement of thermal conductivity of thin films with upper protective layer via differential 3$\omega$ method is verified to be reliable as long as the proposed preconditions are satisfied. Experimental results show that the experimental errors tend to increase with aspect ratio between upper protective layer thickness and width of the heater line due to heat spreading effect.

  • PDF