• 제목/요약/키워드: Stopped-flow fluorescence

검색결과 12건 처리시간 0.015초

Elucidation of Serpin's Conformational Switch Mechanism By Rapid Kinetic Study

  • Kang, Un-Beom;Lee, Cheolju;Baek, Je-Hyun;Seunghyun Ryu;Kim, Joon;Yu, Myeong-Hee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.62-62
    • /
    • 2003
  • The native form of serpin (serine protease inhibitor) is kinetically trapped in metastable state. Metastability in these proteins is critical to their biological function. Serpins inhibit target proteases by forming a stable covalent complex in which the cleaved reactive site loop of the serpin is inserted into $\beta$-sheet A of the serpin with concomitant translocation of the protease to the opposite of the initial binding site. Despite recent determination of the crystal structures of a Michaelis protease-serpin complex as well as a stable covalent complex, details on the kinetic mechanism remain unsolved. In this study we constructed several $\alpha$$_1$-antitrypsin variants and examined their kinetic mechanism of loop translocation and formation of protease-serpin complex by stopped-flow experiments of fluorescence resonance energy transfer as well as quenched-flow experiment. We report here the relationship of serpin's conformational switch mechanism with Inhibitory activity. There is little direct correlation between loop insertion rate and inhibitory activity. Rather, disrupting a salt bridge between R196 and E354 accelerates loop translocation even though it impairs the inhibitory activity. Moreover, the serpin's reactive site loop is translocated, at least partially, prior to loop cleavage.

  • PDF

Silicon transporter genes of Fragilariopsis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light

  • Oh, Han Sang;Lee, Sung-eun;Han, Chae-seong;Kim, Joon;Nam, Onyou;Seo, Seungbeom;Chang, Kwang Suk;Jin, EonSeon;Hwang, Yong-sic
    • ALGAE
    • /
    • 제33권2호
    • /
    • pp.191-203
    • /
    • 2018
  • Fragilariopsis cylindrus is one of the most successful psychrophiles in the Southern Ocean. To investigate the molecular mechanism of biomineralization in this species, we attempted to synchronize F. cylindrus growth, since new cell wall formation is tightly coupled to the cell division process. Nutrient limitation analysis showed that F. cylindrus cultures rapidly stopped growing when deprived of silicate or light, while growth continued to a certain extent in the absence of nitrate. Flow cytometry analysis indicated that deprivation of either silicate or light could effectively arrest the cell cycle of this diatom species at the G1 phase, suggesting that synchrony can be established using either factor. Fluorescence labeling of new cell walls was faintly detectable as early as approximately 6 h after silicon repletion or light irradiation, and labeling was markedly intensified by 18 h. It is revealed that the synthesis of girdle bands begins before valve synthesis in this species, with active valve synthesis occurring during the G2 / M phase. Expression profiling revealed that selective member(s) of the F. cylindrus SIT genes (FcSIT) respond to silicate and light, with a different set of genes being responsive to each factor. The Si / light double depletion experiments demonstrated that expression of one FcSIT gene is possibly correlated to transition to G2 / M phase of the cell cycle, when the valve is actively formed.