• 제목/요약/키워드: Stone powder

검색결과 132건 처리시간 0.026초

석고제품(石膏製品)에 촉진제(促進劑) 사용시(使用時) 경화시간(硬化時間) 및 경도(硬度)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究) (An Investigation of How the Accelerator Effects the Setting Time and The Headness of Plaster Products)

  • 황성식
    • 대한치과기공학회지
    • /
    • 제19권1호
    • /
    • pp.43-54
    • /
    • 1997
  • This investigation is carried out of inqurie into the effects of the accelerator on the setting time and haedness when it is used with plaster products. Plaster($\beta$), dental hard stone($\alpha$), and limproved dental hard stone($M{\alpha}$) are selected as the objects of the investigation, since they are most common materials for dental plaster products. Setting time is gauged by means of Vicket Needle and Gilmore Needle, and hardness is gauged by means of Brinell and Vicket Hardness machines. Samples of each material are made in the standerd water powder ratio and with the accelerator repectively, Every material is tested five times each. The results of the tests are as fallow : 1) In each case the setting time is shortened when the accelerator is used. 2) Of the three materials the hardness of the plaster was lowest A($\beta$) < B($\alpha$) < C($M{\alpha}$)} 3) In each case the hardness of the samples made in the standard water powder ratio were higher than that of the sample made with the accelerator. A1 > A2 ; B1>B2 ; C1>C2 4) Final Conclusion : Higher quality cast is expected when it is made in the standard water powder ratio.

  • PDF

Novel green composite material manufactured by extrusion process from recycled polypropylene matrix reinforced with eucalyptus fibres and granite powder

  • Romulo Maziero;Washington M. Cavalcanti;Bruno D. Castro;Claudia V. Campo, Rubio;Luciano M.G. Vieira;Tulio H. Panzera;Juan C. Campos Rubio
    • Advances in materials Research
    • /
    • 제12권2호
    • /
    • pp.119-131
    • /
    • 2023
  • The development of sustainable composites materials, from recycled polymeric materials and waste from the wood industry and stone processing, allows reducing the volume of these by-products, minimizing impacts on health and the environment. Nowadays, Polypropylene (PP) is the most recycled polymer in industry, while the furniture industry has increasingly used timber felled from sustainable forest plantations as a eucalypt. The powder tailing from the ornamental stone extraction and processing industry is commonly disposed of in the environment without previous treatment. Thus, the technological option for the development of composite materials presents itself as a sustainable alternative for processing and manufacturing industries, enabling the development of new materials with special technical features. The results showed that powder granite particles may be incorporated into the polypropylene matrix associated with short eucalyptus fibres forming green hybrid composites with potential application in structural engineering, such as transport and civil construction industries.

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

석회석 미분말 및 플라이 애시를 사용한 고유동 콘크리트의 공극구조에 관한 연구 (A Study on Pore Structure of High-Fluidity Concrete using Lime Stone Powder and Fly-ash)

  • 최연왕;;엄주한
    • 한국건설순환자원학회논문집
    • /
    • 제6권3호
    • /
    • pp.118-125
    • /
    • 2011
  • 콘크리트 내부의 공극의 크기 및 분포상태는 콘크리트의 내구성을 결정하는 요인 중 하나이며, 구조물의 성능을 판단하는데 중요한 지표로 사용된다. 최근 고유동 콘크리트(High-Fluidity Concrete 이하 HFC로 약함)에 대한 연구는 많은 시공사례와 함께 진행되고 있지만, 콘크리트의 내구성능에 영향을 미치는 공극구조에 대한 연구는 미비한 실정이다. 따라서 본 연구에서는 30 MPa 범위의 일반콘크리트(Conventional Concrete 이하 CC로 약함) 및 석회석 미분말 및 플라이 애시를 사용한 HFC를 제조하여 콘크리트의 공극구조를 비교 분석 하였다. 실험결과 30 MPa 범위의 CC 및 HFC의 평균 공극 직경은 HFC가 CC보다 작게 나타났으며, SEM 분석 결과 HFC가 CC보다 전체적으로 내부구조가 치밀한 것으로 나타났다. 이러한 결과를 통하여 HFC가 CC보다 내구성 측면에서 우수할 것으로 판단된다.

  • PDF

게르마늄 처리가 쌀 품질에 미치는 영향 (Effect of Ge(Germanium) Treatment on Rice Quality)

  • 김덕희;김광옥
    • 한국식품영양학회지
    • /
    • 제22권4호
    • /
    • pp.701-707
    • /
    • 2009
  • This study was conducted to investigate the effects of Ge(germanium) treatment on rice quality. Rice samples were divided into the following treatment groups: control(CON: cultivated without Ge), Ge-1(cultivated with 200 kg of rough stone powder containing 1.6 mg/kg germanium per 10 ha), and Ge-2(cultivated with 500 kg of rough stone powder containing 1.6 mg/kg germanium per 10 ha). The mean total Ge level in the Ge-2 sample was 20.47 ppb. The levels of Ca and Na in the Ge-2 rice increased by 65.12 and 110.28%, respectively, when compared to the control, whereas the Zn, Mn, Fe, Mg and K content decreased by 11.44~30.50%. No significant difference in the percentage weight of C and O was observed among samples. The order of the percentage weight of P, S, and Cl was Ge-2>Ge-1>CON. The free amino acids were higher in samples from the Ge-1 and Ge-2 groups than in samples from the control. The GABA($\gamma$-aminobutyric acid) amount in the Ge-2 products was significantly high compared to other groups. The micro structure of Ge-2 showed a firmer network than the control and had a macroporous structure. Conversely, the Ge-2 products had higher scores for stickiness, hardness and overall taste when compared to the other groups. These results suggest that rice treated with rough stone powder containing germanium can be used in the production of commercially-desired functional rice.

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

쇄석분을 사용한 초유동콘크리트의 특성에 관한 연구 (Properties of the Super Flowing Concrete Using Crushed Stone Fines)

  • 이승한;정용욱
    • 콘크리트학회논문집
    • /
    • 제13권5호
    • /
    • pp.476-483
    • /
    • 2001
  • 초유동콘크리트는 유동성 증진 및 충전성 향상을 위해 단위분체량을 크게하기 때문에 콘크리트의 고강도화와 수화발열량을 증가시키는 문제점을 가지고 있다. 이에 본 연구는 초유동콘크리트의 강도조절과 수화열 저감을 위해 쇄석분을 이용하여 초유동콘크리트의 강도, 유동성, 내구성능 및 건조수축 특성을 검토하였다. 실험결과 쇄석분은 치환율 10% 증가시마다 무치환시의 압축강도를 약 10~15%씩 감소시키며, 변형계수와 물구속비를 감소시켜 초유동콘크리트의 유동성 향상에 효과적이다. 또한 초유동콘크리트에서 쇄석분 10%치환시 마다 단위시멘트량 감소에 따른 최고 단열온도상승량을 약 4$^{\circ}C$씩 감소시켰다. 반면 건조수축량은 10%치환시 마다 약 5%증가시켰다. 한편 초유동콘크리트의 내구성능은 단위분체량과 유동성향상에 따른 조직의 치밀화로 쇄석분 치환에 관계없이 상대동탄성계수 90%이상으로 우수하게 나타났다. 이와 같이 분체로서 쇄석분 사용은 치환량에 따른 초유동콘크리트의 강도조절이 가능하며 수화발열량을 저감시킬 수 있다. ^ x Super flowing concrete causes high strength and the increase of heat of hydration because of the big unit powder content of concrete to increase flowability and to improve compact of concrete. Therefore, this study investigates the characteristic properties of strength, flowability, durability and drying shrinkage to control strength and to reduce heat of hydration of super flowing concrete using crushed stone fines. According to the experimental results, when crushed stone fines are increased every 10%, 10~15% of compressive strength is decreased and flowability of super flowing concrete is effectively improved due to the decrease of modulus of deformation and confined water ratio. When crushed stone fines are replaced every 10%, 4$^{\circ}C$ of the highest adiabatic temperature rise is decreased by reducing the unit cement. However, 5% of drying shrinkage is increased in the same condition. In the meantime, durability of super flowing concrete is excellent, having over 90 % of good relative dynamic modulus of elasticity due to fineness of formation caused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, it can be said that the usage of crushed stone fines can control the strength of super flowing concrete by replacement and reduce heat of hydration.

폐콘크리트 미분말을 활용한 재생시멘트의 원료조합 (Raw Materials Composition of Recycled Cement from Waste Concrete Powder)

  • 권은희;안재철;박동천;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.61-62
    • /
    • 2012
  • This study is for analyzing possibility of utilizing as cement from waste concrete. The scrapped fine powder which contains a large amount of hydrate of cement can supercede lime stone, and greenhouse gas reductions are expected. However, Fine Aggregate powder efficient separation technology development is essential for that limestone substitution effect and reduce greenhouse gas emissions in order to facilitate through the recycling of the scrapped fine powders.

  • PDF

쇄석미분말을 사용한 해양콘크리트의 고성능화에 관한 연구 (The Study on High Performance of Offshore Concrete Using Crushed Stone Fines)

  • 장준호;정용욱
    • 해양환경안전학회지
    • /
    • 제15권2호
    • /
    • pp.135-142
    • /
    • 2009
  • 본 연구는 고성능콘크리트의 강도조절과 수화열 저감을 위하여 쇄석 쇄사 생산시 발생되는 쇄석미분말을 사용하여 고성능콘리트의 강도, 유동성 내구성능 및 건조수축 특성을 검토한 것이다. 실험결과 쇄석미분말은 치환율 10% 증가시마다 무치환시의 압축강도를 약 $10{\sim}15%$씩 감소시키며, 변형계수와 물구속비를 감소시켜 고성능콘크리트의 유동성 향상에 효과적이다. 또한, 고성능콘크리트에서 쇄식미분말 10% 치환시 마다 단위시멘트량 감소에 따른 최고 단열온도상승량을 약 $4^{\circ}C$씩 감소시켰다. 반면 건조수축랑은 10% 치환시마다 약 5% 증가시키는 것으로 나타났다. 한편 고성능콘크리트의 내구성은 단위분체량과 유동성향상에 따른 조직의 치밀화로 쇄석미분말의 치환에 관계없이 상대동탄성계수 100%이상으로 우수하게 나타났다. 이와 같이 문제로서 쇄석미분말의 사용은 치환량에 따른 고성능콘크리트의 강도조절이 가능하며 수차 발열량을 저감시킬 수 있다.

  • PDF

폐콘크리트 미분을 사용한 경량기포콘크리트의 특성에 관한 실험적 연구 (An Experimental Study on Properties of Light-Weight Foamed Concrete Using the Waste Concrete Powder)

  • 최훈국;김재원;서정필;이정구;강철;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.75-78
    • /
    • 2007
  • The recycling program about waste concrete is being progressed to national research. But research on waste concrete powder which is occurred in control process of concrete powder is not enough. Waste concrete powder includes in $SiO_2,\;Al_2O_3$, and CaO so that the create of tobermorite is possibile through Hydrothermal Syntesis Reaction. Tobermorite have an advantage of high strength, sulphuric acid resistance and the lower drying shrinkage. Accordingly, this study investigate in properties of light-weight foamed concrete made with waste concrete powder. As a results, light-weight foamed concrete made with waste concrete powder is the higher than stone powder sludge of density and porosity, and the tower compressive strength. Therefore, it is thought that light-weight foamed concrete using waste concrete powder is possible.

  • PDF