• Title/Summary/Keyword: Stone consolidation

Search Result 55, Processing Time 0.023 seconds

Probability-based design charts for stone column-improved ground

  • Deb, Kousik;Majee, Anjan
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.539-552
    • /
    • 2014
  • A simplified probability-based design charts for stone column-improved ground have been presented based on the unit cell approach. The undrained cohesion ($c_u$) and coefficient of radial consolidation ($c_r$) of the soft soil are taken as the most predominant random variables. The design charts are developed to estimate the diameter of the stone column or the spacing between the stone columns by employing a factored design value of $c_r$ and $c_u$ so as to satisfy a specific probability level of the target degree of consolidation and/or a target safe load that needs to be achieved in a specified timeframe. The design charts can be used by the practicing engineers to design the stone column-improved ground by considering consolidation and /or bearing capacity of the improved ground.

Influence of Salts on Consolidation of Nebra Sandstone (네브라 사암의 강화처리에 미치는 염의 영향)

  • Do, Jin-Young
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.89-96
    • /
    • 2006
  • Surface layers of stone cultural properties including the soluble salt need consolidation because they are mostly very weak. There is a lot of research on the penetration depth of consolidant in stone and the effect of consolidant on mechanical stability of deteriorated structure. But some conservation experiences show that consolidation with silicic acid ester is not successful on salt contaminated stone cultural properties. In this study, in order to assess the influence of soluble salts$(CaSO_4\;2H_2O,\;NaNO_3)$ on the efficiency of consolidation on the deteriorated stone cultural properties(Nationalgalerie, Berlin, Germany) sandstone samples have been soaked with the salts solution. The impregnation of consolidant based on ethyl filicate have been afterwards carried out on these samples. As a result, it confirms that the soluble salts act as a preventer or consolidation. They fill up the pores in the stone and prevent that sufficient amount of consolidant enter deeply into the stone. According to this result, if use silicic ethyl ester as a consolidant for the research object which is built by Nebra sandstone, desalination is necessary before the treatment with consolidant. But it is also reported by other researches that some soluble salts improve the consolidation effect. Therefore it should be necessary to pre-study about salt and its harmfulness before the consolidation treatment. In order to consolidate without the aggravative damage in salt contaminated stone cultural heritage, we must first of all study the relations among salt, stone and consolidant.

  • PDF

Application of chemical consolidants into the conservation of limestone monuments

  • Shin, Gi-Rye;Park, Hyeong-Dong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.540-543
    • /
    • 2003
  • There are many stone monuments which are weathered by natural or artificial factors in Korea. The partly weathering in stone could accelerate the rate of weathering, so it is demanded to keep them from the further weathering. Consolidation is evaluated as one of the efficient treatments which have a good effectiveness in stone monuments. But following the former researches, the effectiveness of consolidation could be different, related to the kinds of stone or consolidants. Therefore, in this study, the change of properties was monitored in the long term for the exact evaluation of the stability of the consolidated stone. It is estimated that the pore structure of consolidated stone was filled by consolidant, according to the measurements of ultrasonic velocity, and the digital image analysis of the sample was shown that the color property of stone surface has varied during the curing.

  • PDF

Settlement Behavior of Soft Ground Reinforced by Stone Columns (쇄석말뚝으로 보강된 연약지반의 침하거동)

  • Shin, Bang-Woong;Bae, Woo-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Stone columns is ground improvement method which is composed of compacted gravel or crushed stone inserted into the soft ground consisting of loose sand and clay by replacement method. Generally stone columns are constructed in silty clay, above 70% replacement rate for increasing the bearing capacity and shear strength. Low replacement stone columns method is limited below 30% at replacement rate-premising strength increase of clay ground is estimated efficiently. This study, laboratory model tests were conducted to investigate the consolidation drainage promotion and shear strength increase effect in soft ground with replacement rate by stone columns. The settlement reduction effect and settlement reduction coefficients increase with increasing the replacement rate in composite ground. The results of model tests indicate that consolidation promotion effect is proved. The increasing strength of composite ground was verified by vane shear tests.

  • PDF

Utilization of Recycled Aggregates and Crushed Stone as Horizontal Drains in Soft Ground (수평 배수재로서 순환골재와 쇄석의 활용 방안)

  • Lee, Dal-Won;Lim, Jin-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.111-123
    • /
    • 2010
  • In this study, laboratory model test on utilization of recycled aggregates and crushed stone as horizontal drains to use alternative material of sand in soft ground is practiced. The coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~5.1 times and 2.0~3.3 times greater than sand, respectively. The horizontal coefficient of permeability in case of installing the horizontal perforated drain pipe showed largely 1.9~6.8 times more than the case of not installing. The drainage distance showed 1.7~1.8 times greater than sand. When a degree of consolidation is 90 %, there is no delay of consolidation in SCP and PVD improvement sections. Therefore, it is proven that the field applicability is excellent. Also, the suitable quality management criterion is presented to make use of a horizontal drains in soft ground on the basis of analysis of the physical and environmental characteristics.

Selection and Conservation for the Filler of Three-storied Stone Pagoda at the West of Gameunsaji Site in Gyeongju (경주 감은사지서삼층석탑 충전제 선정과 보존처리)

  • Lee, Tae-Jong;Kim, Sa-Dug;Gal, Seo-Yeon
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.361-370
    • /
    • 2010
  • The open pore of stone cultural heritage is not expected to have an effect only by consolidation, and it has a drawback that only the internal wall adheres and gets consolidated due to the incrase of liquidity caused by the low viscosity and difference of materials in the case of filling with high molecules synthetic resins. Therefore, this research selected the effective filler for Three-storied Stone Pagoda at the West of Gameunsaji Site through the verification of filling effects of materials using the information about various fillers based on minerals. As the result of filler experiment, got filled with the combination of KSE 500 STE + KSE Filler A${\cdot}$KSE Filler B that is the same as the Member or has very similar properties. The total surface area of the west stone is $252.6m^2$ and the area where the internal opening has been developed is $17.77m^2$(7.03%) requiring a task that fills the internal($24,885m{\ell}$).

An Experimental Application of Consolidants Using Artificially Weathered Stones (인공풍화암을 이용한 강화제의 적용실험 연구)

  • Lee, Jae Man;Lee, Myeong Seong;Kim, Jae Hwan;Lee, Mi Hye;Park, Sung Mi
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.285-296
    • /
    • 2012
  • This study was to assess the effect of consolidation for intension measures of stone cultural heritage using artificially weathered stones. We have prepared four kinds of stones (Gyeongju Namsan Granite, Iksan Granite, Yeongyang Sandstone, Jeongseon Marble), and manufactured fresh, weathered and highly weathered stone samples by thermal shock for each rock type. The samples were treated with three consolidants (Wacker OH 100, Remmers KSE 300, 1T1G) by three methods {immersion, capillary rise (partial immersion), spray}, and tested for weight, porosity, ultrasonic velocity, Equotip hardness and color before and after treatment. As a result, the effect of consolidation was widely influenced by porosity and treatment methods. Wacker OH 100 was shown the highest consolidation effect in almost every stone sample.

Field Test of Recycled Aggregates and Crushed Stone as Horizontal Drains (수평배수재용 순환골재와 쇄석의 현장시험)

  • Kim, Si-Jung;Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, field test on utilization of recycled aggregates and crushed stone as horizontal drains to use an alternative material of sand in soft ground is practiced. The settlement with time showed similarly ranged from 28.4-30.3 cm in the all horizontal materials. The excess pore water pressure of the recycled aggregates and crushed stone showed smaller than sand. The small the excess pore water pressure becomes faster the consolidation period and it can reduces the amount of residual settlement. Therefore, it was verified as having enough to an alternative materials that the field applicability is excellent. The distribution of earth pressure with time showed similarly in the all horizontal materials. The recycled aggregates and crushed stone was very applicable to practice because there is no mat resistance in the horizontal drains layer. The penetration rate in the SCP and PVD improvement sections did not show large differences as the grain size and the horizontal drainage height increases.

PRACTICAL MODELLING OF STONE-COLUMN REINFORCED GROUND

  • Tan By S.A.;Tjahyono S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.291-311
    • /
    • 2006
  • The acceleration of consolidation by stone columns was mostly analysed within the framework of a basic unit cell model (i.e. a cylindrical soil body around a column). A method of converting the axisymmetric unit cell into the equivalent plane-strain model would be required for two-dimensional numerical modelling of multi-column field applications. This paper proposes two practical simplified conversion methods to obtain the equivalent plane-strain model of the unit cell, and investigates their applicability to multi-column reinforced ground. In the first conversion method, the soil permeability is matched according to an analytical equation, whereas in the second method, the column width is matched based on the equivalence of column area. The validity of these methods is tested by comparison with the numerical results of unit-cell simulations and with the field data from an embankment case history. The results show that for the case of linear-elastic material modelling, both methods produce reasonably accurate long-term consolidation settlements, whereas for the case of elasto-plastic material modelling, the second method is preferable as the first one gives erroneously lower long-term settlements, where plastic yielding of stone column are ignored.

  • PDF