• Title/Summary/Keyword: Stone Powder Sludge

Search Result 24, Processing Time 0.03 seconds

The Strength Properties of Concrete Used Stone Powder Sludge as Siliceous Material (실리카질 재료로서 석분 슬러지를 사용한 콘크리트의 강도 특성)

  • Jeong Ji Yong;Choi Sun Mi;Kawg Eun Gu;Choi Se Jin;Lee Seong Yeon;Kim Jin Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.85-88
    • /
    • 2005
  • The stone powder sludge occurred at aggregate production process is classified the specified waste, so it is disposed by appropriate method. But the problems of the shortage of the disposal-site, the environment pollution, and the increase of disposal cost can be occurred in handling process, therefore the stone powder sludge is required the development of recycling technique. The stone powder sludge includes SiO2 of about $63\%$. This characteristic is important at the production of hardened specimens under condition of hydro-thermal reaction. In this study, we investigated the strength properties of concrete used stone powder sludge as siliceous material. The test results under condition of hydro-thermal reaction shows the two main facts. The first, the stone powder sludge is affected to fluidity because the surface of the stone powder sludge has characteristics of flakily and angularity. The second, weight content of the stone powder sludge, is not effective factor to the properties of strength.

  • PDF

Applicability of Stone Powder Sludge as a Substitute Material for Quartz Sand in Autoclaved Aerated Concrete

  • Kim, Jin-Man;Choi, Se-Jin;Jeong, Ji-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.111-117
    • /
    • 2017
  • Stone powder sludge is a byproduct of the crushed aggregate industry, and most of it is dumped with soil in landfills. The disposal of stone powder sludge presents a major environmental problem. This paper investigates the effects of stone powder sludge on the fluidity, density, strength and micro-structure properties of AAC(autoclaved aerated concrete) samples. Stone powder sludge was obtained from a crushed aggregate factory in order to investigate its applicability as a substitute for quartz sand in AAC. To determine the properties of the AAC samples produced with stone powder sludge, specimens containing different foam ratios were produced. Flow value, density, compressive strength, tensile strength and flexural strength of the samples were tested, and X-ray diffraction (XRD) was performed. The test results indicated that the compressive strength of AAC specimens (F120) with stone powder sludge was higher than that of AAC specimens (Q120) with quartz sand for same foam ratio of 120%. For all XRD diagrams, a higher number of tobermorite peaks was shown for the F120 sample than for the Q120 sample, which may explain the slightly higher strength gain in the F120 sample.

Use of Stone Powder Sludge in Fly Ash-Based Geopolymer

  • Choi, Se-Jin
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • Stone powder sludge is a by-product of the manufacturing process of crushed sand. Most of it is dumped with soil in landfills, and the disposal of stone powder sludge causes a major environmental problem. This paper investigates the applicability of stone powder sludge in fly ashbased geopolymer. For this, stone powder sludge was used to replace fly ash at a replacement ratio of 50% and 100% by weight. The compressive strength of the samples was measured and scanning electron microscopy/ energy dispersive spectroscopy (SEM/EDS) analysis and X-ray diffraction (XRD) were performed. The test results indicated that the optimum level of the alkali activator ratio ($Na_2SiO_3$/NaOH) for fly ash-based geopolymer using stone powder sludge was 1.5. The strength development is closely related to the NaOH solution concentration. In addition, the compressive strength of the sample cured at $25^{\circ}C$ was significantly improved between 7 days and 28 days, even though the strength of the sample showed the lowest value at 7 days. Microscopy results indicated that a higher proportion of unreacted fly ash spheres remained in the sample with 5M NaOH, and some pores on the surface of the sample were observed.

A Flexural Strength Properties of Extruding Concrete Panel Using Stone Powder Sludge (석분슬러지를 이용한 압출성형 콘크리트 패널의 휨강도 특성)

  • Choi Hun-Gug;Jung Eun-Hye;Kawg Eun-Gu;Kang Cheol;Seo Jung-Pil;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.115-118
    • /
    • 2006
  • Nowadays the using of concrete is generalized, and construction material is demanded to be lightweight according to increasing the height and capacity of buildings. Therefore, it needs to develop the products having the great quality and various performance. Extruding concrete panel made of cement, silica source, and fiber, and it is a good lightweight concrete material in durability and thermostable. The silica of important ingredient is natural material with hish SiO2 contents and difficult in supply because of conservation of environment. On the other hand, the stone powder sludge discharged about 20-30% at making process of crushed fine aggregate and it is wasted. The stone powder sludge is valuable instead of silica ole because the stone powder sludge includes water of about 20-60%, SiO2 of about 64% and it has fine particles. This experiment is on the properties of extruding concrete panel using the stone powder sludge use instead of silica. From this experiment, we find that it is possible to replace the silica as stone power sludge up to 50%,

  • PDF

The Basic Study on the Underwater-Hardening Epoxy Mortar Using Stone Powder Sludge (석분슬러지를 이용한 수중 경화형 에폭시 모르타르의 개발에 관한 기초적 연구)

  • Jung Eun-Hye;Kawg Eun-Gu;Bae Dae-Kyung;Cho Sung-Hyun;Bae Kee-Sun;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.409-412
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performances are considered in structures. In generally, epoxy mortar is used to repair materials of underwater concrete. It is divided epoxy and filler which is organized cement and sand. Cement can be replaced by stone powder sludge in waste because the grading of stone powder sludge in drying state has similar to that of cement. As result of study, it is possible that stone powder sludge can be applied for replacement materials of cement in epoxy mortar, because the strength is not different when filler in epoxy mortar is alternated stone powder sludge.

  • PDF

The Possibility of Utilizing Stone Powder Sludges as Adsorbents for Heavy Metals (중금속 흡착제로서 석분슬러지의 활용 가능성)

  • 진호일;민경원
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.519-524
    • /
    • 2000
  • This study has been performed to evaluate the possibility of utilizing stone powder sludges from stone quarry and manufacturing plant as adsorbents for heavy metals in industrial wastewater. The stone powder sludges from stone quarry (IS-01) have the most effective adsorption capacity (above 95% of initial concentrations) under the given experimental conditions of reaction times (Pb : 15 min, Cu : 2 hr, Zn : 48 hr), initial acidity of solution (pH>3) and dosage (sludge/liquid ratio : 0.02). The stone powder sludges from manufacturing plant (CW-01) show relatively high adsorption capacity (about 95% of initial concentrations) only for Pb with a reaction times of 12 hours, initial acidity of solution (pH>3) and dosage (sludge/liquid ratio : 0.02). The stone powder sludges (IS-01) from stone quarry having relatively excellent adsorption capacity under the given experimental conditions show their potential utilization as heavy metal adsorbents.

  • PDF

The Engineering Properties of Light Weight Concrete Using Stone Powder Sludge (석분 슬러지를 사용한 경량 콘크리트의 공학적 특성)

  • Jung Ji Yong;Kim Ha Seok;Choi Sun Mi;Choi Se Jin;Lee Seong Yeon;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.457-460
    • /
    • 2005
  • The stone powder sludges, which are occurred in aggregate production company, have classified the specified waste, so taking place the environment pollution and the disposal cost. In this causes, the stone powder sludge is required the development of recycling technique. This study concerned with the using possibility of stone powder sludge on light weight concrete. We acquired the fundamental date on recycling technique of stone sludges, by hydro-thermal reaction. The results shows that it is possible to develop the light weight concrete, having various range of properties according to the content of foam.

  • PDF

Hydrothermal Preparation of Artificial Stone Plate from Stone Powder Sludge (수열양생법에 의한 석분 슬러지로부터 인조석판재의 제조)

  • 김치권;배광현
    • Korean Journal of Crystallography
    • /
    • v.12 no.4
    • /
    • pp.216-221
    • /
    • 2001
  • Artificial stone plates were hydrothermally prepared in order to utilize the stone powder sludge which were generated from stone quarry . Calcium hydroxide and silica were added to sludge of which main phases were quartz and alumina, and the effect of vapour pressure, reaction time and added amount on the properties of plates were investigated. The compressive strength, water absorp-tion and apparent specific gravity of the plates, which were prepared from the mixture of 70% stone sludge, 20% calcium hydroxide and 10% silica for 3 hours at the conditions of pressing pressure of 200kg/㎠ and vapour pressure of 20 kg/㎠, were 614kg/㎠, 0.48%, 1.88 respectively. It was also possible to produce various colours and appearances by adding inorganic pigments.

  • PDF

Characteristics of Concrete Sidewalk Block Manufactured Using Stone Powder Sludge and photocatalytic agent (석분슬러지와 광촉매제를 사용한 콘크리트 보도블록의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4237-4244
    • /
    • 2015
  • This study examined the efflorescence characteristics of a concrete sidewalk block manufactured using recycled stone powder sludge and photocatalytic generated by surface polishing during the sidewalk block manufacturing process. The study evaluated the characteristics of the sidewalk block in terms of its quality, based on the amount of stone powder sludge used, efflorescence, and further based on the mixing ratio and number of applications of the photocatalytic. The experimental results indicated that heavy metals such as lead, hexavalent chrome, cadmium, and mercury were not present in the concrete sidewalk block, thereby confirming the effectiveness of the recycled stone powder sludge. The optimum mixing ratio of used in the concrete sidewalk block (for satisfying KS standard values such as water absorption ratio and flexural strength) was found to be 20%. The concrete sidewalk block incorporating the stone powder sludge and photocatalytic exhibited a water absorption ratio of 5.4% and flexural strength of 5.2 MPa, thereby satisfying the quality standards. Additionally, when the photocatalytic was used, efflorescence did not occur even at the low temperature of $-5^{\circ}C$, and the by the sidewalk block was found to be 70% under normal conditions and 68% when subjected to an accelerated weathering test.

A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2 (과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구)

  • Kim, Gui-Shik;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.