• 제목/요약/키워드: Stokes problems

검색결과 184건 처리시간 0.019초

LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험 (AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL)

  • 류경중;김동현;추헌호;심재박
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

비압축성 2 상유동의 모사를 위한 level set 방법에서의 reinitialization 직접 접근법에 관한 연구 (Study on the direct approach to reinitialization in using level set method for simulating incompressible two-phase flows)

  • 조명환;최형권;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.568-571
    • /
    • 2008
  • The computation of moving interface by the level set method typically requires reinitializations of level set function. An inaccurate estimation of level set function ${\phi}$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, accurate and robust reinitialization process is essential to the free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates directly level set function ${\phi}$ using a normal vector in the interface without solving the re-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1splitting FEM are adopted to discretize advection equation of the level set function and the Navier-Stokes equation, respectively. Advection equation of free surface and re-initialization process are validated with benchmark problems, i.e., a broken dam flow and time-reversed single vortex flow. The simulation results are in good agreement with the existing results.

  • PDF

차분래티스 Subgrid모델의 난류모델을 이용한 유동현상 및 Cavity Noise 계산 (Fluid Dynamic & Cavity Noise by Turbulence Model of the FDLBM with Subgrid Model)

  • 강호근;노기덕;강명훈;김유택;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1149-1154
    • /
    • 2005
  • The finite difference lattice Boltzmann method(FDLBM) is a quite recent approach for simulating fluid flow, which has been proven as a valid and efficient tool in a variety of complex flow problems. It is considered an attractive alternative to conventional FDM and FVM, because it recovers the Navier-Stokes equations and is computationally more stable, and easily parallelizable to simulate for various laminar flows and a direct simulation of aerodynamics sounds. However, the research of a numerical simulation of turbulent flow by FDLBM, which is important to analyze the structure of turbulent flow in engineering fields, is not carried out. In this research, the FDLBM built in the turbulent model is applied, and a flowfield around 2-dimensional square to validate the applied model with 2D9V is simulated. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

  • PDF

왕복동식 압축기 흡입계 머플러의 유동/음향 특성에 대한 수치적 연구 (Numerical Investigation Into Flow and Acoustic Performances of Intake Mufflers in Reciprocating Compressor)

  • 김상현;정철웅;박재성;김해승;이효재
    • 한국소음진동공학회논문집
    • /
    • 제25권8호
    • /
    • pp.532-538
    • /
    • 2015
  • In a reciprocating compressor, highly impulsive pressure fluctuations induced by a reciprocating piston give rise to serious noise and vibration problems. A muffler is frequently used to reduce this impulsive noise, but also has adverse effects on compressor performance due to additional pressure drop and heat transfer of refrigerants through it. Therefore, the flow and acoustic performances of mufflers used in a compressor should be considered simultaneously. In this study, both of flow and acoustic performances of mufflers are investigated using computational fluid dynamic techniques by solving full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations. For validation purpose, the numerical method is initially applied to predict the transmission loss of a simple expansion muffler, and its predicted results show good agreements with theoretical and experimental results. Then, the flow and acoustic performances of an existing muffler is numerically investigated. On the basis of the analysis results, a new muffler is purposed and its performances are compared with the existing one. Improved performances of the new muffler are confirmed.

The controllable fluid dash pot damper performance

  • Samali, Bijan;Widjaja, Joko;Reizes, John
    • Smart Structures and Systems
    • /
    • 제2권3호
    • /
    • pp.209-224
    • /
    • 2006
  • The use of smart dampers to optimally control the response of structures is on the increase. To maximize the potential use of such damper systems, their accurate modeling and assessment of their performance is of vital interest. In this study, the performance of a controllable fluid dashpot damper, in terms of damper forces, damper dynamic range and damping force hysteretic loops, respectively, is studied mathematically. The study employs a damper Bingham-Maxwell (BingMax) model whose mathematical formulation is developed using a Fourier series technique. The technique treats this one-dimensional Navier-Stokes's momentum equation as a linear superposition of initial-boundary value problems (IBVPs): boundary conditions, viscous term, constant Direct Current (DC) induced fluid plug and fluid inertial term. To hold the formulation applicable, the DC current level to the damper is supplied as discrete constants. The formulation and subsequent simulation are validated with experimental results of a commercially available magneto rheological (MR) dashpot damper (Lord model No's RD-1005-3) subjected to a sinusoidal stroke motion using a 'SCHENK' material testing machine in the Materials Laboratory at the University of Technology, Sydney.

Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors

  • Shamsi, Reza;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.287-301
    • /
    • 2013
  • The present paper deals with the problems of yaw angle effects on podded propulsor performance. The study aims at providing insights on characteristics of podded propulsors in azimuthing condition. In this regard, a wide numerical simulation that concerned yaw angle effect measurement on podded propeller performance was performed. The Reynolds-Averaged Navier Stokes (RANS) based solver is used in order to study the variations of hydrodynamic characteristics of podded propulsor at various angles. At first, the propeller is analyzed in open water condition in absence of pod and strut. Next flow around pod and strut are simulated without effect of propellers. Finally, the whole unit is studied in zero yaw angle and azimuthing condition. Structured and unstructured mesh techniques are used for single propeller and podded propulsor. The performance curves of the propeller obtained by numerical method are compared and verified by the experimental results. The characteristic parameters including the torque and thrust of the propeller, the axial force and side force of unit are presented as function of velocity advance ratio and yaw angle. The results shows that the propeller thrust, torque and podded unit forces in azimuthing condition depend on velocity advance ratio and yaw angle.

연속식 용용아연도금 공정에서의 단부 과도금 현상에 대한 수치 해석 (Analysis of Edge Overcoating in Continuous Hot-Dip Galvanizing)

  • 안기장;김상준;조중원;정명균
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.763-770
    • /
    • 2004
  • The problem of edge overcoating developed near the edge of the steel strip is studied quantitatively in the gas wiping process of continuous hot-dip galvanizing. It has been assumed that the edge overcoating occurs due to the reduced impact pressure of wiping gas on the strip edge and it is one of detrimental problems to the quality of coating products. In order to analyse the edge overcoating problem numerically, three-dimensional unsteady flows due to the gas wiping are calculated by using a commercial code, STAR-CD. Standard $\kappa$-$\varepsilon$ model is used as a turbulence model. The 1D code for calculation of coating thickness is constructed by using continuity and Navier-Stokes equations. The calculation results have shown good agreement with measurements of edge overcoating thickness, taken from galvanizing line trials. Therefore it is conformed that the major cause of edge overcoating is the reduced impact pressure of wiping gas on the strip surface.

비압축성 2 상유동의 모사를 위한 Level Set 방법의 Reinitialization 방정식의 해법에 관한 연구 (Study on the Solution of Reinitialization Equation for Level Set Method in the Simulation of Incompressible Two-Phase Flows)

  • 조명환;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.754-760
    • /
    • 2008
  • Computation of moving interface by the level set method typically requires the reinitialization of level set function. An inaccurate estimation of level set function $\phi$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, an accurate and robust reinitialization process is essential to the simulation of free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates level set function directly using a normal vector on the interface without solving there-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1 splitting/SUPG (Streamline Upwind Petrov-Galerkin) FEM are adopted to discretize advection equation of the level set function and the incompressible Navier-Stokes equation, respectively. Advection equation and re-initialization process of free surface capturing are validated with benchmark problems, i.e., a broken dam flow and timereversed single vortex flow. The simulation results are in good agreement with the existing results.

ISPH법을 이용한 2차원 비압축성 유체 유동의 수치시뮬레이션 기법 연구 (A Study on the Numerical Simulation Method of Two-dimensional Incompressible Fluid Flows using ISPH Method)

  • 김철호;이영길;정광열
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.560-568
    • /
    • 2011
  • In SPH(Smoothed Particle Hydrodynamics) method, the fluid has been assumed that it is weakly compressible to solve the basic equations composed of Navier-Stokes equations and continuity equation. That leads to some drawbacks such as non-physical pressure fluctuations and a restriction as like small time steps in computation. In this study, to improve these problems we assume that the fluid is incompressible and the velocity-pressure coupling problem is solved by a projection method(that is, by ISPH method). The two-dimensional computation results of dam breaking and gravitational wave generation are respectively compared with the results of finite volume method and analytical method to confirm the accuracy of the present numerical computation technique. And, the agreements are comparatively acceptable. Subsequently, the green water simulations of a two-dimensional fixed barge are carried out to inspect the possibility of practical application to ship hydrodynamics, those correspond to one of the violent free surface motions with impact loads. The agreement between the experimental data and the present computational results is also comparatively good.

비정상 RANS 법과 중첩격자계를 이용한 횡파중 선박운동 수치해석 (Numerical Analysis of Ship Motions in Beam Sea Using Unsteady RANS and Overset Grid Methods)

  • 박일룡
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.109-123
    • /
    • 2008
  • The present paper presents the CFD result for a beam wave test case. An ONR tumblehome ship model with bilge keels is used. The beam wave test is for zero forward speed and roll and heave 2DOF with wave slope $a_k=0.156$ and wavelength ${\lambda}=1.12L_{PP}$, with $L_{PP}$ the ship length. The problems is solved numerically with an unsteady Reynolds averaged Navier-Stokes approach. The free surface flow is computed using a single-phase level-set method and the motions in each time step are integrated using a predictor-corrector iteration approach which uses dynamic overset grids moving with relative ship motion. The predicted CFD results for motions and forces are compared with experimental data, showing a reasonable agreement.