• Title/Summary/Keyword: Stokes parameters

Search Result 219, Processing Time 0.028 seconds

Application of Navier-Stokes Equations to the Aerodynamic Design of Axial-Flow Turbine Blades (축류터빈 블레이드의 공력학적 설계를 위한 Navier-Stokes방정식의 적용)

  • Chung H.T;Chung K.S;Park J.Y;Baek J.H;Chang B.I;Cho S.Y
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2003
  • The design method for transonic turbine blades has been developed based on Wavier-Stokes equations. The present computing process is done on the four separate steps, i.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. In the present study, numerical simulation has been done to investigate the effects of the design parameters on the aerodynamic peformance of the axial-flow turbine blades. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to four parameters and compared with the experimental data.

Solvent Effects on the Solvatochromism of 7-Aminocoumarin Derivatives in Neat and Binary Solvent Mixtures: Correlation of the Electronic Transition Energies with the Solvent Polarity Parameters

  • Choi, Jin-Yeong;Park, Eun-Ju;Chang, Seung-Hyun;Kang, Tai-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1452-1458
    • /
    • 2009
  • The change in the electronic absorption and emission energy of 7-aminocoumarin derivatives in binary solvent mixtures has been studied. The electronic transition energy along with the Stokes' shift is correlated with the orientation polarizability of the solvent as well as the empirical solvent polarity parameters $E_T$ (30). It is observed that the emission peak shift traces the change of $E_T$ (30) value very closely in binary solvent mixtures. The emission transition more strongly depends on the solvent polarity than the absorption, which indicates the dipole moment gets larger on excitation. From the dependence of the Stokes’ shift of 7-aminocoumarins with the solvent polarity parameters and the ground state dipole moment obtained by the semi-empirical calculations, the excited state dipole moment was estimated. The fluorescence lifetime change of 7-aminocoumarins in binary solvent mixtures was measured and the results are explained in terms of molecular conformation and solvent polarity. The study indicates the empirical solvent polarity $E_T$ (30) is a good measure of microscopic solvent polarity and it probes in general the non-specific solvent interactions.

A Study on the Aerodynamic Diameter of Flame-generated Aggregates (화염에서 생성된 응집체의 공기역학적 입경에 대한 연구)

  • Kwon, Moon-Seok;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.600-604
    • /
    • 2001
  • The relation between the aerodynamic diameter and some morphological parameters was studied for flame-generated aggregates. $SiO_{2}$ aggregates were generated from $SiCl_{4}$ in premixed methane/air flames. These aggregates were sampled and classified according to their aerodynamic diameter by a cascade impactor; moreover, computer program was developed and tested to find the equivalent area diameter and the fractal dimension of the aggregates. We calculated the parameters from the digitized images of the aggregate TEM micrographs. The aerodynamic diameters of the sampled aggregates were larger than $0.4{\mu}m$ in this experiment. In most cases, fractal dimension of their projection image was very close to 2.0 for these large aggregates. It was found that the equivalent area diameter of these aggregates was approximately three times larger than the Stokes' diameter of them.

  • PDF

Polarization Distortion and Compensation of Circularly Polarized Emission from Chiral Metasurfaces

  • Yeonsoo Lim;In Cheol Seo;Young Chul Jun
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.147-156
    • /
    • 2023
  • Circularly polarized (CP) emission can be achieved by integrating emissive materials into chiral metasurfaces. Such CP light sources in integrated device platforms are desirable for important potential applications. However, the exact characterization of the polarization state in CP emission may include some errors because of the unwanted polarization distortion caused by optical components (e.g., beam splitter) in the optical setup. Here, we consider CP emission measurements from chiral metasurfaces and characterize the polarization distortion caused by the beam splitter. We first detail the procedures for the Stokes parameters and Mueller matrix measurements. Then, we directly measure the Mueller matrix of the beam splitter and retrieve the original polarization state of CP emission from our metasurface sample. Using the measured Mueller matrix of the beam splitter, we specifically identify what contributes to polarization distortion in CP emission. Our work may provide useful guidelines for the characterization and compensation of polarization distortion in general Stokes parameter measurements.

Application of Modified Stokes Expression to Model the Behavior of Expanded Beds with Feed Streams Containing E. coli Homogenates

  • Chae, Young-Rea;Yoon, Yeo-Joon;Ryu, Keun-Garp
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.323-325
    • /
    • 2004
  • To model the behavior of expanded beds with aqueous feed streams containing different amounts of glycerol, we previously developed a modified Stokes expression that correlates the terminal settling velocity of a particle of a solution with the properties of the particle (particle diameter and density) and the solution (density and viscosity). Two empirical parameters, the effective diameter of the poly-disperse resins for protein adsorption and an exponent of non-unity for $(\rho_{P}-\rho)/\mu$ term, are introduced in the modified Stokes expression. We applied the same type of the modified Stokes expression in combination with the Richardson-Zaki correlation to the published results [1], and found that the expansions of the beds with feed streams containing different amounts of E. coli homogenates can also be successfully described.

Parametric Study on the Aerodynamic Design of Axial-Flow Turbine Blades Using Two-Dimensional Navier-Stokes Equations (Navier-Stokes 방정식에 의한 축류터빈 블레이드의 공력학적 설계변수 특성 연구)

  • Chung, Ki-Seob;Chung, Hee-Taeg;Park, Jun-Young;Baek, Je-Hyun;Chang, Beom-Ik;Cho, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.169-175
    • /
    • 2000
  • A design method for transonic turbine blades is developed based on Navier-Stokes equations. The present computing process is done on the four separate steps, 1.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to the aerodynamic performance and are compared with the experimental data.

  • PDF

Analysis of flow in a square cavity with an oscillating top wall (진동하는 윗벽면을 가진 정방형 웅덩이 안에서의 흐름)

  • Min, Byeong-Gwang;Jang, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.392-404
    • /
    • 1997
  • The flow induced by the oscillatory motion of a solid body is important in a number of practical problems. As the solid boundary oscillates harmonically, there is steady streaming motion invoked by the Reynolds stresses, which could cause extensive migration of the fluid during a period of fluid motion. We here analyzed the flow in a square cavity with an oscillating top wall for the parameters which make the time derivatives and the convective terms equally important in the entire cavity flow. The full Navier-Stokes equations are solved by the second-order time accurate Momentum Coupling Method which is devised by the authors. The particular numerical scheme does not need subiteration at each time step which is usually a required process to calculate the incompressible Navier-Stokes equations. The effect of two parameters, the Reynolds number and the frequency parameter, on the oscillatory flow has been investigated.

NONPOTENTIAL PARAMETERS OF SOLAR ACTIVE REGION AR 5747

  • MOON Y.-J.;YUN H. S.;CHOE GWANGSON;PARK Y. D.;MICKEY D. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • Nonpotential characteristics of magnetic fields in AR 5747 are examined using Mees Solar Observatory magnetograms taken on Oct. 20, 1989 to Oct. 22, 1989. The active region showed such violent flaring activities during the observational span that strong X-ray flares took place including a 2B/X3 flare. The magnetogram data were obtained by the Haleakala Stokes Polarimeter which provides simultaneous Stokes profiles of the Fe I doublet 6301.5 and 6302.5. A nonlinear least square method was adopted to derive the magnetic field vectors from the observed Stokes profiles and a multi-step ambiguity solution method was employed to resolve the $180^{\circ}$ ambiguity. From the ambiguity-resolved vector magnetograms, we have derived a set of physical quantities characterizing the field configuration, which are magnetic flux, vertical current density, magnetic shear angle, angular shear, magnetic free energy density, a measure of magnetic field discontinuity MAD and linear force-free coefficient. Our results show that (1) magnetic nonpotentiality is concentrated near the inversion line in the flaring sites, (2) all the physical parameters decreased with time, which may imply that the active region was in a relaxation stage of its evolution, (3) 2-D MAD has similar patterns with other nonpotential parameters, demonstrating that it can be utilized as an useful parameter of flare producing active region, and (4) the linear force-free coefficient could be a evolutionary indicator with a merit as a global nonpotential parameter.

  • PDF

Prediction of Transonic Buffet Onset for a Supercritical Airfoil with Shock-Boundary Layer Interactions Using Navier-Stokes Solver

  • Chung, Injae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • To predict the transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions, a practical steady approach has been proposed. In this study, it is assumed that the airfoil flow is steady even when buffet onset occurs. Steady Navier-Stokes computations are performed on the supercritical airfoil. Using the aerodynamic parameters calculated from Navier-Stokes solver, various steady approaches for predicting buffet onset are discussed. Among the various steady approaches considered in this study, Thomas' criterion based on Navier-Stokes computation has shown to be the most appropriate indicator of identifying the buffet onset for a supercritical airfoil with shock-boundary layer interactions. Good agreements have been obtained compared with the results of unsteady transonic wind tunnel tests. The present method is shown to be reliable and useful for transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions in terms of practical engineering viewpoint.

Perturbation Analysis of Stokes Flow in Porous Medium (다공성 매질의 내부유동에 관한 섭동해석)

  • Seong, Kwanjae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2005
  • In this study, flow in a porous medium is analyzed using a computer-extended perturbation series solution. The flow is modelled as a creeping flow in a periodically constricted channel. The channel walls have a sinusoidally varying width and the flow is analyzed in terms of its vorticity and stream functions in the Stokes flow regime. The perturbation series in terms of a small parameter, average width to length ratio, is extended with a computer resulting in purely asymptotic series and Pade summation is used to obtain final results. Resulting flow shows flow separations in the widening section and immobile zones in the widest section of the flow regime with reattachment in the narrowing section. Analysis of the flow separation phenomena resulted in a correlation between the two geometric parameters of the channel walls to predict the onset of flow separation in the Stokes flow regime.