• Title/Summary/Keyword: Stoker Incinerator

Search Result 22, Processing Time 0.03 seconds

The Study of Numerical Simulation on the Thermal Flow Performance for the Design of Low Emission Stoker Type Municipal Waste Incinerator (저공해 스토커형 도시폐기물 소각로 설계를 위한 열유동 수치해석 연구)

  • 전영남;송형운;김미환
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.543-551
    • /
    • 2002
  • A Numerical simulation on the thermal flow performance was carried out to propose the incinerator type for the domestic refuses and to investigate the design factor and operating conditions. The SSTI(Standard Stoker Type Incinerator) proposed in this study was modified from the type with central f)ow. It has the characteristics of good mixing between refuse and hot combustion gas in primary combustion chamber and between unburned gas inflowing and secondary air jet in secondary chamber. By predictive results, the SSTI was no recirculation zone in secondary chamber so that mixing time was increased with high residence time. It has good characteristics of combustion and low emission. Parametric screening studies have been understood with phenomenon of combustion in incinerator.

A Numerical Study on the Combustion Characteristics for Stoker Type Incinerator with Various Injection Type of Secondary Air (2차 공기 주입방식에 따른 스토커형 소각로의 연소특성에 관한 수치해석적 연구)

  • Jung, Jin;Kim, Chang-Nyeong;Cho, Young-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.835-842
    • /
    • 2003
  • A three dimensional numerical analysis has been conducted for a stoker type incinerator which has the capacity of 1.5 ton/hr. The objective of the present study is to predict the effects of swirl induced by secondary air and to find an optimal operating condition of the incinerator. In this study, combustion characteristics such as distributions of temperature, velocity and concentration of each species have been examined with various injection types of secondary air and with different flow rates of secondary air in the incinerator. It is found that the secondary air injection on the combustion process makes the path of fluid particle longer in the combustor and enhances the mixing between air and combustion gas by arousing a swirl. Therefore, the injection type of secondary air can be an important key in the design process of incinerator.

The study on the combustion model and combustion characteristics for stoker type incinerator (스토커형 소각로의 연소특성 및 연소 모델에 관한 연구)

  • Kim, Ho-Yeong;Hwang, Ho-Yeong;Jeon, Cheol-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.627-639
    • /
    • 1998
  • A combustion model for the incineration of municipal solid waste(MSW) in the stoker type incinerator was developed by considering the variation of physical composition of MSW. Theoretical analysis and numerical simulation for the combustion characteristics in incinerator were conducted by using the present model and the effects of compositional variation on the incineration characteristics of MSW was examined theoretically. It is found that large excess air enhances drying, but depresses volatilization. For the large value of moisture content, pyrolysis is fast but drying is slow. As the value of plastic content increases, devolatilization becomes slower. Larger amount of primary air supply to the rear side of stoker leads to increase the possibility of delaying the combustion.

A Numerical Study of the 2-D Cold Flow for a Qubec City Stoker Incinerator (큐벡시 스토커 소각로 2차원 비반응 유동장 수치해석)

  • 박지영;송은영;장동순
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.268-275
    • /
    • 1993
  • A series of parametric investigations are performed in order to resolve the flow characteristic of a Quebec city stoker incinerator. The parameters considered in this study are five internal configurations of the Quebec city stoker itself and its modified ones, primary air velocity, the injection velocity and angle of the secondary air, and the reduction of the stoker exit area. A control-volume based finite-difference method by Patankar together with the power-law scheme is employed for discretization. The resolution of the pressure-velocity coupling is made by the use of SIMPLEC algorithm. The standard, two equation, k-$\varepsilon$ model is incorporated for the closure of turbulence. The size of recirculation region, turbulent viscosity, the mass fraction of the secondary air and pressure drop are calculated in order to analyze the characteristics of flow field. The results are physically acceptable and discussed in detail. The flow field of the Quebec city stoker shows the strong recirculation zone together with the high turbulence intensity over the upper part of the incinerator.

  • PDF

The Estimation of Emission Factor of N2O and CH4 by Measurement from Stacks in the Waste Incinerators and Cement Production Plants

  • Choi, Sang-Min;Im, Jong-Kwon;Hong, Ji-Hyoung;Lee, Sue-Been;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.217-226
    • /
    • 2007
  • The purpose of this study is to estimate the emission factor of $non-CO_2$ global warming gases such as $N_2O$ and $CH_4$ by measuring concentrations from stacks of waste incinerators and cement production plants. Based on the established monitoring methods, $N_2O$ concentration measured from stacks in incinerator were between 0.62 and $40.60\;ppm_v$ (ave. $11.50\;ppm_v$). The concentration of $N_2O$ was dependent on the incinerator types. However, the concentrations of $CH_4$ gas were between 2.65 and $5.68\;ppm_v$ (ave. $4.22\;ppm_v$), and did not show the dependency on the incinerator types. In the cement production plant, the concentration ranges of $N_2O$ from the stack were from 6.90 to $10.80\;ppm_v$ (ave. $8.60\;ppm_v$), and $CH_4$ were between 1.80 and $2.20\;ppm_v$ (ave. $2.60\;ppm_v$). Using measured concentrations, the emission amounts of $N_2O$ and $CH_4$ from stacks per year were calculated. The results were is 4.2 ton $N_2O/yr$ in the incinerators, and 53.7 ton $N_2O/yr$ in the cement facilities. The big difference is from the flow rate of flue gas in the cement facilities compared to the incinerators. By the same reason, the $CH_4$ emission amounts in cement plant and incinerator was found to be 339 ton $CO_2/yr$ and 34.1 ton $CO_2/yr$, respectively. Finally, the emission factor of $N_2O$ in the incinerators were calculated using the measured concentration and the amount of incinerated wastes, and was $42.5\sim799.1\;g/ton$ in kiln and stoker type, $11.9\sim79.9\;g/ton$ in stoker type, 90.1 ton/g in rotary kiln type, 174.9 g/ton in fluidized bed type, and 63.8 g/ton in grate type, respectively. Also, the emission factors of $CH_4$ were found to 65.2-91.3 g/ton in kiln/stoker type, 73.9-122 g/ton in stoker type, 109.5 g/ton rotary kiln, and 26.1 g/ton in fluidized bed type. This result indicates that the emission factor in incinerators is strongly dependent on the incinerator types, and matched with result of IPCC (International Panel on Climate Change) guideline.

Study on Incineration Behavior of Heavy Oil Fly Ash for Valuable Metal Recovery (유가금속(有價金屬) 회수(回收)를 위한 중유회(重油灰)의 연소거동(燃燒擧動)에 관한 연구(硏究))

  • Choi, Young-Yeon;Nam, Chul-Woo;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.22-29
    • /
    • 2009
  • To design and construct a moving bed stoker incinerator for incineration treatment of the domestic oil fly ash, operating condition and moving bed area of incinerator were determined by performing incinerate experiment of the oil fly ash in the muffle furnace which simulates moving bed stoker incinerator in all conditions. Incineration process of the oil fly ash could be divided into 3 stages, every stage needs the appropriate operating condition for effective incineration. The optimum content of water in the heavy oil fly ash was found to be 20 wt% to prevent the ash from flying and reduce the volume. Science combustion rate of oil fly ash depends on the oxygen content, the incinerator must have a equipment to control the oxygen content in the combustion air. The optimum temperature was $750{\sim}800^{\circ}C$ in order to prevent adhesion to the stocker and evaporation of metal compounds of low melting point. Uniform combustion reaction and acceleration of combustion rate required agitation during the combustion of oil fly ash. The incineration rate was $12.53kg/m^2hr$ and the working area of moving bed incinerator was found to be $60m^2$ to incinerate 18 tons of oil fly ash per day.

Prediction of Polychlorinated-dibenzofurans (PCDFs) Formation in Municipal Waste Incinerator (도시소각로에서 Polychlorinated-dibenzofurans (PCDFs)의 생성 예측)

  • Ryu, Jae-Yong;Suh, Jeong-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.842-850
    • /
    • 2006
  • The role of chlorination reactions in the formation of polychlorinated dibenzofurans (PCDFs) in a municipal waste incinerator was assessed using a chlorination model for predicting PCDF isomer distributions. Complete distributions of PCDF congeners were obtained from a stoker-type municipal waste incinerator operated under 13 test conditions. Samples were collected from the flue gas prior to the gas cleaning system. While total PCDF yields varied by a factor of five to six, the distributions of congeners were similar. A chlorination model, dependent only on the observed distribution of monochlorinated isomers, was developed to predict the distributions of poly-chlorinated isomers formed by chlorination of dibenzofuran (DF). Agreement between predicted and measured PCDF isomer distributions was high for all homologues, supporting the hypothesis that DF chlorination can play an important role in the formation of PCDF byproducts.

Development of Fuzzy Logic Controller for Automatic Combustion of Refuse Incinerator (쓰레기 소각로 자동 연소를 위한 퍼지 제어기의 개발)

  • Song, Young-Seuk;Park, Jang-Geon;Kim, Yong-Tae;Lee, He-Young;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.123-128
    • /
    • 1996
  • In this paper, a fuzzy controller is proposed for the operation of stoker-type refuse incinerator with many kinds of uncertain factors. To build the exact mathematical model is very difficult because of the variation of physical/chemical properties of refuse as a fuel and the complexity of the combusiton process. The fuzzy controller consists of fuzzy sensor, fuzzy decision maker and tracking part. The rules based on the professional operators empirical knowledge are made for the control of the boiler evaporation rate, emission gas and refuse throughput. For the performance measure of the proposed fuzzy controller, the model of the incinerator is constructed and the simulation results are given.

  • PDF