• Title/Summary/Keyword: Stoichiometric number

Search Result 41, Processing Time 0.035 seconds

Electrical properties of the Al doped ZnO thin films fabricated by RF magnetron sputtering system with working pressure and oxygen contents (RF magnetron sputtering법으로 제조한 Al doped ZnO 박막의 산소함량과 압력변화에 따른 전기적 특성 변화)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.77-81
    • /
    • 2010
  • The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering and effects of working pressure and oxygen contents on the electrical properties were investigated. XRD spectra showed a preferred orientation along the c-axis and a minimum FWHM for the 70mTorr. From the surface analysis (AFM), the number of crystal grain of AZO thin film increased as working pressure increased. The film deposited with 70mTorr of working pressure showed n-type semiconductor characteristic having suitable resistivity $-1.59{\times}10^{-2}{\Omega}cm$, carrier concentration $-10.1{\times}10^{19}cm^{-3}$, and mobility $-4.35cm^2V^{-1}s^{-1}$ while other films by 7 mTorr, 20 mTorr of working pressure closed to metallic films. The films including the oxygen represent stoichiometric composition similar to the oxide. The transmittance of the film was over 85% in the visible light range regardless of the changes in working pressure and oxygen contents.

The Onset and Growth of the Buoyancy-driven Fingering Driven by the Irreversible A+B→C Reaction in a Porous Medium: Reactant Ratio Effect

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.138-151
    • /
    • 2021
  • The effect of a reactant ratio on the growth of a buoyancy-driven instability in an irreversible A+B→C reaction system is analyzed theoretically and numerically. Taking a non-stoichiometric reactant ratio into account, new linear stability equations are derived without the quasi-steady state assumption (QSSA) and solved analytically. It is found that the main parameters to explain the present system are the Damköhler number, the dimensionless density difference of chemical species and the ratio of reactants. The present initial grow rate analysis without QSSA shows that the system is initially unconditionally stable regardless of the parameter values; however, the previous initial growth rate analysis based on the QSSA predicted the system is unstable if the system is physically unstable. For time evolving cases, the present growth rates obtained from the spectral analysis and pseudo-spectral method support each other, but quite differently from that obtained under the conventional QSSA. Adopting the result of the linear stability analysis as an initial condition, fully nonlinear direct numerical simulations are conducted. Both the linear analysis and the nonlinear simulation show that the reactant ratio plays an important role in the onset and the growth of the instability motion.

Effects of Surface Defect Distribution of $SiO_x(x{\le}2)$ Plates on Chemical Quenching ($SiO_x(x{\le}2)$ 플레이트의 표면 결함 분포가 화학 소염에 미치는 영향)

  • Kim, Kyu-Tae;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.328-336
    • /
    • 2005
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine the chemical quenching phenomenon, we prepared thermally grown silicon oxide plates with well-defined defect density. Ion implantation was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove the oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}C$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). The analysis shows that as the ion energy increases, the number of structural defect also increases and non-stoichiometric condition of $SiO_x(x{\le}2)$ plates is enhanced. From the quenching distance measurements, we found out that when the surface temperature is under $300^{\circ}C$, the quenching distance decreases on account of reduced heat loss; as the surface temperature increases over $300^{\circ}C$, however, quenching distance increases despite reduced heat loss effect. Such aberrant behavior is caused by heterogeneous chemical reaction between active radicals and surface defect sites. The higher defect density, the larger quenching distance. This results means that chemical quenching is governed by radical adsorption and can be parameterized by the oxygen vacancy density on the surface.

  • PDF

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (II) - Combustion Analysis - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (II) - 연소 분석 -)

  • Kwon, Soon Tae;Park, Chanjun;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.743-752
    • /
    • 2013
  • This is the second paper on the combustion characteristics of landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine, and it discusses the combustion process on the basis of pressure measurements. The results show that the bimodal peak pressure phenomenon, which is caused by the interaction of the heat release and the heat transfer, is more apparent as the mixtures are more favorable to combustion, and the magnitudes of the pressures depend on the unburned fraction. In addition, there exist four main inflection points during heat release owing to variations in the heat transfer area related to flame propagation from the ignition point. Furthermore, the number of inflection points increases as the mixture quality worsens because of the extended burn duration. Consequently, the sophisticated interactions between the heat transfer area changing pattern due to flame propagation and transfer duration might cause very peculiar heat release patterns.

An experimental study on the ignition of dusts behind reflected shock waves (고체미립자의 반사압축파에 의한 점화에 관한 실험적 연구)

  • 백승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.118-123
    • /
    • 1987
  • In relation to the dust detonatians which have imposed severe damages on the industry, the ignitability of various dusts has been investigated on a horizontal shock tube in this study. By using a newly designed air injector, very well-distributed clouds could be obtained. The proper reflected shock conditions have been generated by placing a reflector 1.5cm behind the air injector, which reflected the incident shock wave. The incident shock waves in the range of Mach number 2.8-3.3 created the postreflected shock temperature of 1200-1600K. Experimentally the ignition delay was defined as the time interval between the arrival of a reflected shock wave at dusts and the detection of visible light. Measured ignition delays of dusts investigated were located lower than 1msec under the above conditions. These values are one-order higher than those in the incident shock wave condition. In this type of ignitiion process the following three processes are considered to play important roles; heating of a particle, generation of volatile gas by endothermic devolatilization process, and its diffusion from the particle surface and the formation of stoichiometric mixture with oxidizer.

The Effect of the Oxygen Flow Rate on the Electronic Properties and the Local Structure of Amorphous Tantalum Oxide Thin Films

  • Denny, Yus Rama;Lee, Sunyoung;Lee, Kangil;Kang, Hee Jae;Yang, Dong-Seok;Heo, Sung;Chung, Jae Gwan;Lee, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.398-398
    • /
    • 2013
  • The electronic properties and the local structure of tantalum oxide thin film with variation of oxygen flow rate ranging from 9.5 to 16 sccm (standard cubic centimeters per minute) have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results show that the Ta4f spectrum for all films consist of the strong spin-orbit doublet $Ta4f_{7/2}$ and $Ta4f_{5/2}$ with splitting of 1.9 eV. The oxygen flow rate of the film results in the appearance of new features in the Ta4f at binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV, these peaks attribute to $Ta^{1+}$, $Ta^{2+}$, $Ta^{4+}$/$Ta^{2+}$, and $Ta^{5+}$, respectively. Thus, the presence of non-stoichiometric state from tantalum oxide ($TaO_x$) thin films could be generated by the oxygen vacancies. The REELS spectra suggest the decrease of band gap for tantalum oxide thin films with increasing the oxygen flow rate. The absorption coefficient ${\mu}$ and its fine structure were extracted from the fluorescence mode of extended X-ray absorption fine structure (EXAFS) spectra. In addition, bond distances (r), coordination numbers (N) and Debye-Waller factors (${\sigma}^2$) each film were determined by a detailed of EXAFS data analysis. EXAFS spectrapresent both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the increase of oxygen flow rate.

  • PDF

Enhanced NH3-SCR Activity of V/TiO2 Catalyst Prepared by Various Ball Mill Method (다양한 Ball Mill Method에 의해 제조된 V/TiO2 촉매의 NH3-SCR 활성 증진연구)

  • Kim, Dong Ho;Seo, Phill Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 2017
  • In this study, the selective catalytic reduction (SCR) for NOx removal was investigated in the temperature range of $150{\sim}400^{\circ}C$. XRD, BET and XPS analyses to determine the structural properties and valence state characteristics of the catalyst were performed. Various ball mill method were shown to a difference in activity at a low temperature below $250^{\circ}C$. Based on the catalyst with the highest denitrification efficiency, the ball mill time was the best result at 3 h. As a result of XPS analysis, the presence of the non-stoichiometric vanadium species and the increase of the number of atoms were attributed to a positive effect in the SCR reaction. it was confirmed that the correlation between the amount of lattice oxygen and the denitrification efficiency through the $O_2$ on-off experiment, and it was in a proportional relationship to each other.

Effect of gas hydrate process on energy saving for reverse osmosis process in seawater desalination plant (해수담수화플랜트에서 가스 하이드레이트 공정 도입을 통한 역삼투 공정의 에너지 절감 효과)

  • Kim, Suhan;Lim, Jun-Heok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Gas hydrate (GH) process is a new desalination technology, where GH is a non- stoichiometric crystalline inclusion compounds formed by water and a number of gas molecules. Seawater GH is produced in a low temperature and a high pressure condition and they are separated from the concentrated seawater. The drawback of the GH process so far is that salt contents contained in its product does not meet the fresh water quality standard. This means that the GH process is not a standalone process for seawater desalination and it needs the help of other desalting process like reverse osmosis (RO). The objective of this study is to investigate the effect of GH process on energy saving for RO process in seawater desalination. The GH product water quality data, which were obtained from a literature, were used as input data for RO process simulation. The simulation results show that the energy saving effect by the GH process is in a range of 68 % to 81 %, which increases as the salt removal efficiency of the GH process increases. Boron (B) and total dissolved solids (TDS) concentrations of the final product of the hybrid process of GH and RO were also investigated through the RO process simulation to find relavant salt rejection efficiency of the GH process. In conclusion, the salt rejection efficiency of the GH process should exceed at least 78% in order to meet the product water quality standards and to increase the energy saving effect.

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Property Variation of Ta2O5 Film during the Atomic Layer Deposition

  • Lee, Seung Youb;Jeon, Cheolho;Kim, Seok Hwan;Lee, Jouhahn;Yun, Hyung Joong;Park, Soo Jeong;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.362-362
    • /
    • 2014
  • Atomic layer deposition (ALD) can be regarded as a special variation of the chemical vapor deposition method for reducing film thickness. ALD is based on sequential self-limiting reactions from the gas phase to produce thin films and over-layers in the nanometer scale with perfect conformality and process controllability. These characteristics make ALD an important film deposition technique for nanoelectronics. Tantalum pentoxide ($Ta_2O_5$) has a number of applications in optics and electronics due to its superior properties, such as thermal and chemical stability, high refractive index (>2.0), low absorption in near-UV to IR regions, and high-k. In particular, the dielectric constant of amorphous $Ta_2O_5$ is typically close to 25. Accordingly, $Ta_2O_5$ has been extensively studied in various electronics such as metal oxide semiconductor field-effect transistors (FET), organic FET, dynamic random access memories (RAM), resistance RAM, etc. In this experiment, the variations of chemical and interfacial state during the growth of $Ta_2O_5$ films on the Si substrate by ALD was investigated using in-situ synchrotron radiation photoemission spectroscopy. A newly synthesized liquid precursor $Ta(N^tBu)(dmamp)_2$ Me was used as the metal precursor, with Ar as a purging gas and $H_2O$ as the oxidant source. The core-level spectra of Si 2p, Ta 4f, and O 1s revealed that Ta suboxide and Si dioxide were formed at the initial stages of $Ta_2O_5$ growth. However, the Ta suboxide states almost disappeared as the ALD cycles progressed. Consequently, the $Ta^{5+}$ state, which corresponds with the stoichiometric $Ta_2O_5$, only appeared after 4.0 cycles. Additionally, tantalum silicide was not detected at the interfacial states between $Ta_2O_5$ and Si. The measured valence band offset value between $Ta_2O_5$ and the Si substrate was 3.08 eV after 2.5 cycles.

  • PDF

Comparative analysis of detonation velocity in determining product composition for high energetic molecules using stoichiometric rules (화학 양론적 규칙으로 고에너지 물질의 폭발 생성물 조성 결정에 따른 폭발속도 비교분석)

  • Kim, Hyun Jeong;Lee, Byung Hun;Cho, Soo Gyeong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.405-410
    • /
    • 2017
  • High energetic materials (HEMs) have been used in fuels, civil engineering and architecture as well as military purposes such as explosives and propellants. The essential process for the development of new energetic compounds is to accurately calculate its detonation performances. The most typical equation for calculating the explosive performance is the Kamlet-Jacobs (K-J) equation. In the K-J equation, the parameter such as the number of moles of gaseous products at the explosion, the average molar mass of gas products, and the explosion heat greatly affect the explosion performance. These depend on the product composition for the detonation reaction. In this study, detonation products of 65 high energetic molecules (HEMs) were calculated from the various rules such as Kamlet-Jacobs, Kistiakowsky-Wilson, modified Kistiakowsky-Wilson, Springall-Roberts rules to calculate more accurate detonation velocity (Dv). In addition, they were applied to five kinds of detonation velocity equations proposed by K-J, Rothstein, Xiong, Stine and Keshavarz. The mean absolute error and root mean square error of HEMs were obtained from experimental and calculated velocity value for each method. The K-J and Xiong equation that is slightly complex showed a lower mean absolute error than the simple Rothstein and Keshavarz equation. When the mod-KW rule was applied to the Xiong equation, the detonation velocities were the most accurate. This study compared the various method of calculating the detonation velocity of HEMs to obtain accurate HEMs performance.