• Title/Summary/Keyword: Stock price index

검색결과 276건 처리시간 0.02초

환율이 국내 증시에 미치는 영향과 대응방안 연구 (A study on the effect of exchange rates on the domestic stock market and countermeasures)

  • 홍성혁
    • 산업융합연구
    • /
    • 제20권6호
    • /
    • pp.135-140
    • /
    • 2022
  • 국내증시는 1992년 1월 자본시장이 개방되고, 외국 자본의 비율이 꾸준히 증가하여 2022년 현재 국내 시장의 30%를 차지하고 있다. 따라서 국내 증시는 국내의 이슈보다는 외국의 이슈에 더 많은 영향을 받고 있다. 외국자본의 매매 동향은 환율변동과 유사한 흐름을 보이고 있다. 환율이 외국자본의 매매에 미치는 영향을 피어슨 상관관계를 이용하여 분석하고, 환율변동에 따른 투자전략을 마련하고 거시경제지표 중 하나인 환율의 변동을 미리 예측하여 선제적으로 주식투자에 활용할 수 있다면 높은 수익률을 기대할 것으로 보인다. 따라서 본 연구에서는 환율과 외국자본의 매매 패턴을 비교 분석하여 국내증시 전반에 영향을 미치는 중요한 요인인 환율에 따른 외국인 변수를 예측하여 매수와 매매의 타이밍을 판단하여 투자에 도움을 주기 위해 본 연구를 진행하였다.

국면전환 GARCH 모형을 이용한 코스피 변동성 분석 (Volatility Forecasting of Korea Composite Stock Price Index with MRS-GARCH Model)

  • 허진영;성병찬
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.429-442
    • /
    • 2015
  • 변동성(volatility)은 투자위험을 의미하며 자산의 가격결정이나 포트폴리오 관리 및 투자전략에서 아주 중요한 역할을 한다. 이러한 변동성을 모형화하기 위한 조건부 이분산 모형으로서 전통적인 GARCH(generalized autoregressive conditional heteroskedastic) 모형 및 확장된 형태들이 널리 사용되어지고 있으나, 금융위기와 재정위기와 같은 구조적 변화를 변동성 예측에 반영할 수 없다는 단점을 가지고 있다. 본 논문에서는 이를 극복하기 위한 모형으로서 국면전환 GARCH(Markov regime switching GARCH) 모형을 소개하고, 한국의 일별 KOSPI 수익률에 적용하여 변동성 분석 및 예측을 실시하고, 기존의 GARCH 모형들과 비교하여 그 성능을 평가한다. 그 결과 표본 내(in-sample)의 변동성 적합도 측면에서 국면전환 GARCH 모형이 가장 우수한 성능을 보였으며, 표본 외(out-of-sample) 예측력 측면에서는 국면전환 GARCH 모형이 단기적 예측에서 좋지 않은 성능을 보였으나 장기적 예측에서 우수함을 보였다.

자산가격의 결정요인에 대한 실증분석 : 미국사례를 중심으로 (A Study on Determinants of Asset Price : Focused on USA)

  • 박형규;정동빈
    • 산경연구논집
    • /
    • 제9권5호
    • /
    • pp.63-72
    • /
    • 2018
  • Purpose - This work analyzes, in detail, the specification of vector error correction model (VECM) and thus examines the relationships and impact among seven economic variables for USA - balance on current account (BCA), index of stock (STOCK), gross domestic product (GDP), housing price indices (HOUSING), a measure of the money supply that includes total currency as well as large time deposits, institutional money market funds, short-term repurchase agreements and other larger liquid assets (M3), real rate of interest (IR_REAL) and household credits (LOAN). In particular, we search for the main explanatory variables that have an effect on stock and real estate market, respectively and investigate the causal and dynamic associations between them. Research design, data, and methodology - We perform the time series vector error correction model to infer the dynamic relationships among seven variables above. This work employs the conventional augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root techniques to test for stationarity among seven variables under consideration, and Johansen cointegration test to specify the order or the number of cointegration relationship. Granger causality test is exploited to inspect for causal relationship and, at the same time, impulse response function and variance decomposition analysis are checked for both short-run and long-run association among the seven variables by EViews 9.0. The underlying model was analyzed by using 108 realizations from Q1 1990 to Q4 2016 for USA. Results - The results show that all the seven variables for USA have one unit root and they are cointegrated with at most five and three cointegrating equation for USA. The vector error correction model expresses a long-run relationship among variables. Both IR_REAL and M3 may influence real estate market, and GDP does stock market in USA. On the other hand, GDP, IR_REAL, M3, STOCK and LOAN may be considered as causal factors to affect real estate market. Conclusions - The findings indicate that both stock market and real estate market can be modelled as vector error correction specification for USA. In addition, we can detect causal relationships among variables and compare dynamic differences between countries in terms of stock market and real estate market.

FDA 승인 공시가 제약 및 바이오·헬스케어 기업의 주가에 미치는 정보효과 (The Information Effect of FDA Approval Announcements on Pharmaceutical and Bio-Health Companies' Stock Prices)

  • 송유정;이상근;박소라
    • 경영정보학연구
    • /
    • 제26권1호
    • /
    • pp.289-313
    • /
    • 2024
  • 한국의 제약 및 바이오·헬스케어 기업들은 2000년대 초부터 FDA 승인을 신청하기 시작했다. 제약회사들은 국내 시장에서 제품을 판매하기 위해 의무적으로 FDA 승인을 받을 필요가 없으며, 승인 과정에 있어 많은 자원을 필요로 한다. 따라서 FDA 승인을 받기위한 투자는 합리적으로 보이지 않는다. 본 연구는 사건연구(event study) 방법론을 활용하여 유가증권 시장 및 코스닥 시장에 상장된 제약 및 바이오·헬스케어 기업들의 주가에 대한 FDA 승인 공시의 정보 효과를 분석하였다. 연구 분석결과에 따르면, FDA 승인 공시에 대한 정보효과가 한국 주식 시장에서 작동하여 해당 기업의 주가를 유의하게 상승시키는 것으로 나타났다. 이는 미국 FDA 승인이 한국 제약 및 바이오·헬스케어 기업의 가치를 제고시키는 효과가 있다는 것을 시사한다. 또한, 중견 및 대기업보다는 중소기업에서, 코스피 시장보다는 코스닥 시장에서, 주가의 가격제한폭이 좁을 때 보다는 확대된 이후에 주가에 정보효과가 더 크게 반영되어 나타났다. 그리고 전통적인 제약산업보다는 바이오·헬스케어 산업인 경우, FDA 승인 공시에 주가는 더 민감하게 반응하는 것을 알 수 있다. 이상의 결과를 토대로 FDA 승인을 얻는 것이 기업의 주가에 긍정적 영향을 미친다는 것을 알 수 있었으며, 국내 기업들의 FDA 승인 신청이 고위험을 감수하며 높은 수익을 노리는 합리적인 투자에 해당함을 제시한다.

Optimum Risk-Adjusted Islamic Stock Portfolio Using the Quadratic Programming Model: An Empirical Study in Indonesia

  • MUSSAFI, Noor Saif Muhammad;ISMAIL, Zuhaimy
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권5호
    • /
    • pp.839-850
    • /
    • 2021
  • Risk-adjusted return is believed to be one of the optimal parameters to determine an optimum portfolio. A risk-adjusted return is a calculation of the profit or potential profit from an investment that takes into account the degree of risk that must be accepted to achieve it. This paper presents a new procedure in portfolio selection and utilizes these results to optimize the risk level of risk-adjusted Islamic stock portfolios. It deals with the weekly close price of active issuers listed on Jakarta Islamic Index Indonesia for a certain time interval. Overall, this paper highlights portfolio selection, which includes determining the number of stocks, grouping the issuers via technical analysis, and selecting the best risk-adjusted return of portfolios. The nominated portfolio is modeled using Quadratic Programming (QP). The result of this study shows that the portfolio built using the lowest Value at Risk (VaR) outperforms the market proxy on a risk-adjusted basis of M-squared and was chosen as the best portfolio that can be optimized using QP with a minimum risk of 2.86%. The portfolio with the lowest beta, on the other hand, will produce a minimum risk that is nearly 60% lower than the optimal risk-adjusted return portfolio. The results of QP are well verified by a heuristic optimizer of fmincon.

한국의 시장위험 프리미엄: 분석과 시사점 (Market Risk Premium in Korea: Analysis and Policy Implications)

  • 권세훈;한상범
    • 아태비즈니스연구
    • /
    • 제15권2호
    • /
    • pp.71-88
    • /
    • 2024
  • Purpose - This study provides an overview of existing research and practices related to market risk premiums(MRP), and empirically estimates the MRP in Korea, particularly using the related option prices. We also seek to improve the current MRP practices and explore alternative solutions. Design/methodology/approach - We present the option price-based MRP estimation method, as proposed by Martin (2017), and implement it within the context of the Korean stock market. We then juxtapose these results with those derived from other methods, and compare the characteristics with those of the United States. Findings - We found that the lower limit of the MRP in the Korean stock market shows a much lower value compared to the US. There seems to be the possibility of a market crash, exchange rate volatility, or a lack of option trading data. We investigated the predictive power of the estimated values and discovered that the weighted average of the results of various methodologies using the Principal Component Analysis (PCA) is superior to the individual method's results. Research implications or Originality - It is required to explore various methods of estimating MRP that are suitable for the Korean stock market. In order to improve the estimation methodology based on option prices, it is necessary to develop the methods using the higher-order(third order or above) moments, or consider additional risk factors such as the possibility of a crash.

KOSPI 예측을 위한 NEWFM 기반의 특징입력 및 퍼지규칙 추출 (Extracting Input Features and Fuzzy Rules for forecasting KOSPI Stock Index Based on NEWFM)

  • 이상홍;임준식
    • 인터넷정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.129-135
    • /
    • 2008
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)을 사용하여 생성된 퍼지규칙과 비중복면적 분산 측정법에 의해 추출된 최소의 특징입력을 이용하여, 1일 후의 KOSPI 예측을 하는 방안을 제안하고 있다. NEWFM은 KOSPI의 최근 32일 동안의 CPPn,m(Current Price Position of day n for n-1 to n-m days)을 이용하여 1일 후의 KOSPI 상승과 하락을 예측한다. 특징입력으로써 CPPn,m과 최근 32일간의 CPPn,m을 웨이블릿 변환한 38개의 계수들 중 비중복면적 분산 측정법을 적용하여 추출된 5개의 계수가 사용되었다. 제안된 방법으로 1991년부터 1998년까지의 실험군을 사용한 결과 평균 67.62%의 예측율을 나타내었다.

  • PDF

중국 제조업 상장기업의 가치평가 설명요인에 관한 연구 (What explains firm valuation? Evidence from the Chinese manufacturing sector)

  • ;안연주;최문섭
    • 무역학회지
    • /
    • 제45권2호
    • /
    • pp.229-262
    • /
    • 2020
  • The price-to-earnings ratio (PER) is an important indicator to measure the stock price and profitability of a firm; it is also the most used valuation indicator among investors. When using the PER to compare the investment values of different stocks, these stocks must come from the same sector. This study mainly focuses on the China's listed manufacturing firms. By learning from previous research results and analyzing the current situation, we studied the correlation between the manufacturing sector's PER and its influencing factors from both macro and micro perspectives, the combination of which eventually sheds light on such correlation. Analyzing GDP growth rate data, Manufacturing Purchasing Managers' Index, and other macroeconomic variables from 2008 to 2018, we conclude that these variables jointly have a certain impact on the average PER of the manufacturing sector. We then form panel data based on relevant (2014-2018) data gathered from 317 of China's A-listed manufacturing firms to study the impact of micro-variables on PER. By using Stata and other software to analyze the panel data, we reach the conclusion that the Debt to Asset Ratio, Return on Equity, EPS growth rate, Operating Profit Ratio, Dividend Payout Ratio, and firm size have a significant impact on PER. The Current Ratio, Treasury Stock ratio and Ownership Concentration have no distinct effect on PER. Based on our empirical findings, we design a theoretical model that affects the PER.

온라인 주식게시판 정보가 주식투자자의 거래행태에 미치는 영향 (The Impact of Information on Stock Message Boards on Stock Trading Behaviors of Individual Investors based on Order Imbalance Analysis)

  • 김현모;박재홍
    • 경영정보학연구
    • /
    • 제18권2호
    • /
    • pp.23-38
    • /
    • 2016
  • 지금까지 수행된 연구들은 온라인 주식게시판 정보가 주식시장 활동에 미치는 영향의 유무만을 보이는 것에 초점을 맞추었으며, 온라인 주식게시판 정보가 주식투자자에게 매수 의도를 갖도록 하는지, 혹은 매도 의도를 갖도록 하는지에 대해서 연구되지 않았다. 따라서 본 연구의 목적은 온라인 주식게시판 정보가 주로 주식투자자의 어떠한 거래행태를 불러일으키는지 확인하는 것이다. 본 연구의 목적을 달성하기 위하여, 온라인 주식게시판 정보로서 주식 게시물 수를 온라인 구전활동 정도로 보았으며, 매수 및 매도 거래행태로서 주문불균형을 주식투자자의 거래방향성으로 보았다. 그리고 이를 기반으로 온라인 주식게시판의 장내 및 장외 주식게시물 수와 주문불균형 간의 상관관계를 확인하였다. 실증분석을 위하여, KOSPI에 상장된 40개 주식종목에 대한 온라인 주식시판으로부터 3개월 동안의 전체 게시물 46,077개를 수집하였고, 코스콤 데이터베이스로부터 해당 주식 종목에 대한 매수 및 매도 주도거래 데이터를 수집하여 절대 거래횟수 주문불균형 데이터를 설정하였다. 수집한 모든 데이터는 종목 및 시간에 따른 균형 패널데이터(balanced panel data)로 구성하였고, 패널 벡터자기 회귀 분석을 수행하였다. 본 연구의 분석결과를 살펴보면, 온라인 주식게시판의 1, 2일 전(t-1, t-2) 장내 게시물 수는 당일 주문불균형에 양의 영향을 미치는 것으로 나타났다. 그리고 온라인 주식게시판의 1일 전(t-1) 장외 게시물 수는 당일 주문불균형에 양의 영향을 미치는 것으로 나타났다. 즉, 온라인 주식게시판 정보는 주식투자자에게 주로 주식매수 결정에 영향을 미치는 것으로 보여 졌으며, 온라인 주식게시판 정보는 주로 해당 주식을 매수하도록 하는 감성(strong buy or buy sentiment)의 속성을 가진 것으로 추정되었다. 이러한 실증분석 결과를 바탕으로 정보시스템 및 재무행태학 부문의 학술적, 실무적 기여점을 제시한다.

변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구 (Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy)

  • 홍성혁
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.57-62
    • /
    • 2023
  • 본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.