• Title/Summary/Keyword: Stock market prediction

Search Result 139, Processing Time 0.02 seconds

Stock Forecasting Using Prophet vs. LSTM Model Applying Time-Series Prediction

  • Alshara, Mohammed Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.185-192
    • /
    • 2022
  • Forecasting and time series modelling plays a vital role in the data analysis process. Time Series is widely used in analytics & data science. Forecasting stock prices is a popular and important topic in financial and academic studies. A stock market is an unregulated place for forecasting due to the absence of essential rules for estimating or predicting a stock price in the stock market. Therefore, predicting stock prices is a time-series problem and challenging. Machine learning has many methods and applications instrumental in implementing stock price forecasting, such as technical analysis, fundamental analysis, time series analysis, statistical analysis. This paper will discuss implementing the stock price, forecasting, and research using prophet and LSTM models. This process and task are very complex and involve uncertainty. Although the stock price never is predicted due to its ambiguous field, this paper aims to apply the concept of forecasting and data analysis to predict stocks.

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

An Empirical Study on Verification and Prediction of Non-Linear Dynamic Characteristics of Stock Market Using Chaos Theory (혼돈기법을 이용한 주가의 비선형 결정론적 특성 검정 및 예측)

  • 김성근;윤용식
    • The Journal of Information Technology and Database
    • /
    • v.6 no.1
    • /
    • pp.73-88
    • /
    • 1999
  • There have been a series of debates to determine whether it would be possible to forecast dynamic systems such as stock markets. Recently the introduction of chaos theory has allowed many researchers to bring back this issue. Their main concern was whether the behavior of stock markets is chaotic or not. These studies, however, present divergent opinions on this question, depending upon the method applied and the data used. And the issue of predictability based on the nonlinear, chaotic nature was not dealt extensively. This paper is to test the nonlinear nature of the Korea stock market and accordingly attempts to predict its behavior. The result indicates that our stock market represents a chaotic behavior. We also found out based on our simulation that executing buy/sell transactions based upon forecasts which were derived using the local approximation method outperforms the decision of holding without a buy/sell transaction.

  • PDF

Toward global optimization of case-based reasoning for the prediction of stock price index

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.399-408
    • /
    • 2001
  • This paper presents a simultaneous optimization approach of case-based reasoning (CBR) using a genetic algorithm(GA) for the prediction of stock price index. Prior research suggested many hybrid models of CBR and the GA for selecting a relevant feature subset or optimizing feature weights. Most studies, however, used the GA for improving only a part of architectural factors for the CBR system. However, the performance of CBR may be enhanced when these factors are simultaneously considered. In this study, the GA simultaneously optimizes multiple factors of the CBR system. Experimental results show that a GA approach to simultaneous optimization of CBR outperforms other conventional approaches for the prediction of stock price index.

  • PDF

Predicting stock price direction by using data mining methods : Emphasis on comparing single classifiers and ensemble classifiers

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.111-116
    • /
    • 2017
  • This paper proposes a data mining approach to predicting stock price direction. Stock market fluctuates due to many factors. Therefore, predicting stock price direction has become an important issue in the field of stock market analysis. However, in literature, there are few studies applying data mining approaches to predicting the stock price direction. To contribute to literature, this paper proposes comparing single classifiers and ensemble classifiers. Single classifiers include logistic regression, decision tree, neural network, and support vector machine. Ensemble classifiers we consider are adaboost, random forest, bagging, stacking, and vote. For the sake of experiments, we garnered dataset from Korea Stock Exchange (KRX) ranging from 2008 to 2015. Data mining experiments using WEKA revealed that random forest, one of ensemble classifiers, shows best results in terms of metrics such as AUC (area under the ROC curve) and accuracy.

Modeling Stock Price Volatility: Empirical Evidence from the Ho Chi Minh City Stock Exchange in Vietnam

  • NGUYEN, Cuong Thanh;NGUYEN, Manh Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2019
  • The paper aims to measure stock price volatility on Ho Chi Minh stock exchange (HSX). We apply symmetric models (GARCH, GARCH-M) and asymmetry (EGARCH and TGARCH) to measure stock price volatility on HSX. We used time series data including the daily closed price of VN-Index during 1/03/2001-1/03/2019 with 4375 observations. The results show that GARCH (1,1) and EGARCH (1,1) models are the most suitable models to measure both symmetry and asymmetry volatility level of VN-Index. The study also provides evidence for the existence of asymmetric effects (leverage) through the parameters of TGARCH model (1,1), showing that positive shocks have a significant effect on the conditional variance (volatility). This result implies that the volatility of stock returns has a big impact on future market movements under the impact of shocks, while asymmetric volatility increase market risk, thus increase the attractiveness of the stock market. The research results are useful reference information to help investors in forecasting the expected profit rate of the HSX, and also the risks along with market fluctuations in order to take appropriate adjust to the portfolios. From this study's results, we can see risk prediction models such as GARCH can be better used in risk forecasting especially.

Search-based Sentiment and Stock Market Reactions: An Empirical Evidence in Vietnam

  • Nguyen, Du D.;Pham, Minh C.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.45-56
    • /
    • 2018
  • The paper aims to examine relationships between search-based sentiment and stock market reactions in Vietnam. This study constructs an internet search-based measure of sentiment and examines its relationship with Vietnamese stock market returns. The sentiment index is derived from Google Trends' Search Volume Index of financial and economic terms that Vietnamese searched from January 2011 to June 2018. Consistent with prediction from sentiment theories, the study documents significant short-term reversals across three major stock indices. The difference from previous literature is that Vietnam stock market absorbs the contemporaneous decline slower while the subsequent rebound happens within a day. The results of the study suggest that the sentiment-induced effect is mainly driven by pessimism. On the other hand, optimistic investors seem to delay in taking their investment action until the market corrects. The study proposes a unified explanation for our findings based on the overreaction hypothesis of the bearish group and the strategic delay of the optimistic group. The findings of the study contribute to the behavioral finance strand that studies the role of sentiment in emerging financial markets, where noise traders and limits to arbitrage are more obvious. They also encourage the continuous application of search data to explore other investor behaviors in securities markets.

Machine Learning Based Stock Price Fluctuation Prediction Models of KOSDAQ-listed Companies Using Online News, Macroeconomic Indicators, Financial Market Indicators, Technical Indicators, and Social Interest Indicators (온라인 뉴스와 거시경제 지표, 금융 지표, 기술적 지표, 관심도 지표를 이용한 코스닥 상장 기업의 기계학습 기반 주가 변동 예측)

  • Kim, Hwa Ryun;Hong, Seung Hye;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.448-459
    • /
    • 2021
  • In this paper, we propose a method of predicting the next-day stock price fluctuations of 10 KOSDAQ-listed companies in 5G, autonomous driving, and electricity sectors by training SVM, XGBoost, and LightGBM models from macroeconomic·financial market indicators, technical indicators, social interest indicators, and daily positive indices extracted from online news. In the three experiments to find out the usefulness of social interest indicators and daily positive indices, the average accuracy improved when each indicator and index was added to the models. In addition, when feature selection was performed to analyze the superiority of the extracted features, the average importance ranking of the social interest indicator and daily positive index was 5.45 and 1.08, respectively, it showed higher importance than the macroeconomic financial market indicators and technical indicators. With the results of these experiments, we confirmed the effectiveness of the social interest indicators as alternative data and the daily positive index for predicting stock price fluctuation.

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.

A study on stock price prediction system based on text mining method using LSTM and stock market news (LSTM과 증시 뉴스를 활용한 텍스트 마이닝 기법 기반 주가 예측시스템 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.223-228
    • /
    • 2020
  • The stock price reflects people's psychology, and factors affecting the entire stock market include economic growth rate, economic rate, interest rate, trade balance, exchange rate, and currency. The domestic stock market is heavily influenced by the stock index of the United States and neighboring countries on the previous day, and the representative stock indexes are the Dow index, NASDAQ, and S & P500. Recently, research on stock price analysis using stock news has been actively conducted, and research is underway to predict the future based on past time series data through artificial intelligence-based analysis. However, even if the stock market is hit for a short period of time by the forecasting system, the market will no longer move according to the short-term strategy, and it will have to change anew. Therefore, this model monitored Samsung Electronics' stock data and news information through text mining, and presented a predictable model by showing the analyzed results.