• Title/Summary/Keyword: Stock index

Search Result 589, Processing Time 0.026 seconds

High-dimensional change point detection using MOSUM-based sparse projection (MOSUM 성근 프로젝션을 이용한 고차원 시계열의 변화점 추정)

  • Kim, Moonjung;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • This paper proposes the so-called MOSUM-based sparse projection method for change points detection in high-dimensional time series. Our method is inspired by Wang and Samworth (2018), however, our method improves their method in two ways. One is to find change points all at once, so it minimizes sequential error. The other is localized so that more robust to the mean changes offsetting each other. We also propose data-driven threshold selection using block wild bootstrap. A comprehensive simulation study shows that our method performs reasonably well in finite samples. We also illustrate our method to stock prices consisting of S&P 500 index, and found four change points in recent 6 years.

Does the Pandemic Declaration influence the Firm Value of the Untact Firms? (팬데믹 선언이 언택트 기업의 기업가치에 미치는 영향: 투자자 마니아 가설을 중심으로)

  • Park, Su-Kyu;Cho, Jin-Hyung
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.247-262
    • /
    • 2022
  • Purpose - The purpose of this study is to examine the impact of the Pandamic Declaration on 'untact firms' listed in KOSPI and KOSDAQ market in order to verify Investor Mania Hypothesis. Design/methodology/approach - This study collected financial data for 44 untact firms in KOSPI and KOSDAQ market. Then, we employed ESM(Event Study Methodology), EGARCH model and DID(Difference-In-Difference) for analysis. Findings - First, in contrast with the benchmarking index, KOSPI 200 which shows a negative (-) abnormal return trend, the untact firms have positive abnormal return trend consistently. Second, after the Pandemic Declaration, the variability of abnormal return for the untact firms is found to be significantly positive. Third, we find that the cumulative abnormal return and volatility of the untact firms significantly increase after the Pandemic Declaration. Research implications or Originality - Based on the Investor Mania Hypothesis, we confirm that the market potential of untact firms after the Pandemic Declaration is observed when compared with the KOSPI 200.

An Investigation of Trading Strategies using Korean Stocks and U.S. Dollar (국내 주식과 미 달러를 이용한 투자전략에 관한 연구)

  • Park, Chan;Yang, Ki-Sung
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.2
    • /
    • pp.123-138
    • /
    • 2022
  • Purpose - This study compares the performances of dynamic asset allocation strategies using Korean stocks and U.S. dollar, which have been negatively correlated for a long time, to examine the diversification effects in the portfolios of them. Design/methodology/approach - In the current study, we use KOSPI200 index, as a proxy of the aggregated portfolio of Korean stocks, and USDKRW foreign exchange rate to implement various portfolio management strategies. We consider the equally-weighted, risk-parity, minimum variance, most diversified, and growth optimal portfolios for comparison. Findings - We first find the enhancement of risk adjusted returns due to risk reduction rather than return increasement for all the portfolios of consideration. Second, the enhancement is more pronounced for the trading strategies using correlations as well as volatilities compared to those using volatilities only. Third, the diversification effect has become stronger after the global financial crisis in 2008. Lastly, we find that the performance of the growth optimal portfolio can be improved by utilizing the well-known momentum phenomenon in stock markets to select the length of the sample period to estimate the expected return. Research implications or Originality - This study shows the potential benefits of adding the U.S. dollar to the portfolios of Korean stocks. The current study is the first to investigate the portfolio of Korean stocks and U.S. dollar from investment perspective.

PREDICTING KOREAN FRUIT PRICES USING LSTM ALGORITHM

  • PARK, TAE-SU;KEUM, JONGHAE;KIM, HOISUB;KIM, YOUNG ROCK;MIN, YOUNGHO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.23-48
    • /
    • 2022
  • In this paper, we provide predictive models for the market price of fruits, and analyze the performance of each fruit price predictive model. The data used to create the predictive models are fruit price data, weather data, and Korea composite stock price index (KOSPI) data. We collect these data through Open-API for 10 years period from year 2011 to year 2020. Six types of fruit price predictive models are constructed using the LSTM algorithm, a special form of deep learning RNN algorithm, and the performance is measured using the root mean square error. For each model, the data from year 2011 to year 2018 are trained to predict the fruit price in year 2019, and the data from year 2011 to year 2019 are trained to predict the fruit price in year 2020. By comparing the fruit price predictive models of year 2019 and those models of year 2020, the model with excellent efficiency is identified and the best model to provide the service is selected. The model we made will be available in other countries and regions as well.

Do Independent Director Characteristics Affect Firm Performance Under the COVID-19 Epidemic? Empirical Evidence from China

  • ZHAO, Xiaoqing;MU, Qingbang;TEO, Brian Sheng-Xian
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.10 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • This paper investigates the effect of independent directorship on the firm performance of Chinese listed companies under the impact of the global COVID-19 epidemic. The study starts by assessing the relationship between independent director-related characteristics and firm performance, then mines independent director characteristics variables, collects variable data, proposes reasonable hypotheses, and constructs a data model. 1597 companies listed on Shanghai and Shenzhen stock index, China, from 2020 to 2021 has been selected as the research sample. An empirical study on the relationship between independent directors' characteristics and firm performance was conducted using SPSS25. The results show that under the impact of the global COVID-19 epidemic, the proportion of independent directors on the board of directors, the age of independent directors, the remuneration of independent directors, and the overseas background of independent directors in Chinese listed companies have a negative relationship with the current firm performance, while the proportion of female independent directors and the part-time rate of independent directors do not have a positive effect on firm performance. The findings of this study strongly imply that independent directors' characteristics play a significant role in corporate governance and firm performance in Chinese listed companies and that the external environment has an impact on how well independent directors can carry out their duties.

APPROXIMATE ESTIMATION OF RECRUITMENT IN FISH POPULATION UTILIZING STOCK DENSITY AND CATCH (밀도지수와 어획량으로서 수산자원의 가입량을 근사적으로 추정하는 방법)

  • KIM Kee Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.2
    • /
    • pp.47-60
    • /
    • 1975
  • For the calculation of population parameter and estimation of recruitment of a fish population, an application of multiple regression method was used with some statistical inferences. Then, the differences between the calculated values and the true parameters were discussed. In addition, this method criticized by applying it to the statistical data of a population of bigeye tuna, Thunnus obesus of the Indian Ocean. The method was also applied to the available data of a population of Pacific saury, Cololabis saira, to estimate its recuitments. A stock at t year and t+1 year is, $N_{0,\;t+1}=N_{0,\;t}(1-m_t)-C_t+R_{t+1}$ where $N_0$ is the initial number of fish in a given year; C, number o: fish caught; R, number of recruitment; and M, rate of natural mortality. The foregoing equation is $$\phi_{t+1}=\frac{(1-\varrho^{-z}{t+1})Z_t}{(1-\varrho^{-z}t)Z_{t+1}}-\frac{1-\varrho^{-z}t+1}{Z_{t+1}}\phi_t-a'\frac{1-\varrho^{-z}t+1}{Z_{t+1}}C_t+a'\frac{1-\varrho^{-z}t+1}{Z_{t+1}}R_{t+1}......(1)$$ where $\phi$ is CPUE; a', CPUE $(\phi)$ to average stock $(\bar{N})$ in number; Z, total mortality coefficient; and M, natural mortality coefficient. In the equation (1) , the term $(1-\varrho^{-z}t+1)/Z_{t+1}$s almost constant to the variation of effort (X) there fore coefficients $\phi$ and $C_t$, can be calculated, when R is a constant, by applying the method of multiple regression, where $\phi_{t+1}$ is a dependent variable; $\phi_t$ and $C_t$ are independent variables. The values of Mand a' are calculated from the coefficients of $\phi_t$ and $C_t$; and total mortality coefficient (Z), where Z is a'X+M. By substituting M, a', $Z_t$, and $Z_{t+1}$ to the equation (1) recruitment $(R_{t+1})$ can be calculated. In this precess $\phi$ can be substituted by index of stock in number (N'). This operational procedures of the method of multiple regression can be applicable to the data which satisfy the above assumptions, even though the data were collected from any chosen year with similar recruitments, though it were not collected from the consecutive years. Under the condition of varying effort the data with such variation can be treated effectively by this method. The calculated values of M and a' include some deviation from the population parameters. Therefore, the estimated recruitment (R) is a relative value instead of all absolute one. This method of multiple regression is also applicable to the stock density and yield in weight instead of in number. For the data of the bigeye tuna of the Indian Ocean, the values of estimated recruitment (R) calculated from the parameter which is obtained by the present multiple regression method is proportional with an identical fluctuation pattern to the values of those derived from the parameters M and a', which were calculated by Suda (1970) for the same data. Estimated recruitments of Pacific saury of the eastern coast of Korea were calculated by the present multiple regression method. Not only spring recruitment $(1965\~1974)$ but also fall recruitment $(1964\~1973)$ was found to fluctuate in accordance with the fluctuations of stock densities (CPUE) of the same spring and fall, respectively.

  • PDF

Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning (투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과)

  • Kim, Kyung Mock;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants. The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017. The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network. We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained. Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies. Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment. The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.

A Single Index Approach for Time-Series Subsequence Matching that Supports Moving Average Transform of Arbitrary Order (단일 색인을 사용한 임의 계수의 이동평균 변환 지원 시계열 서브시퀀스 매칭)

  • Moon Yang-Sae;Kim Jinho
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.42-55
    • /
    • 2006
  • We propose a single Index approach for subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single index approach, we can reduce both storage space overhead and index maintenance overhead. Moving average transform is known to reduce the effect of noise and has been used in many areas such as econometrics since it is useful in finding overall trends. However, the previous research results have a problem of occurring index overhead both in storage space and in update maintenance since tile methods build several indexes to support arbitrary orders. In this paper, we first propose the concept of poly-order moving average transform, which uses a set of order values rather than one order value, by extending the original definition of moving average transform. That is, the poly-order transform makes a set of transformed windows from each original window since it transforms each window not for just one order value but for a set of order values. We then present theorems to formally prove the correctness of the poly-order transform based subsequence matching methods. Moreover, we propose two different subsequence matching methods supporting moving average transform of arbitrary order by applying the poly-order transform to the previous subsequence matching methods. Experimental results show that, for all the cases, the proposed methods improve performance significantly over the sequential scan. For real stock data, the proposed methods improve average performance by 22.4${\~}$33.8 times over the sequential scan. And, when comparing with the cases of building each index for all moving average orders, the proposed methods reduce the storage space required for indexes significantly by sacrificing only a little performance degradation(when we use 7 orders, the methods reduce the space by up to 1/7.0 while the performance degradation is only $9\%{\~}42\%$ on the average). In addition to the superiority in performance, index space, and index maintenance, the proposed methods have an advantage of being generalized to many sorts of other transforms including moving average transform. Therefore, we believe that our work can be widely and practically used in many sort of transform based subsequence matching methods.

The Mean-VaR Framework and the Optimal Portfolio Choice (평균-VaR 기준과 최적 포트폴리오 선택)

  • Ku, Bon-Il;Eom, Young-Ho;Choo, Youn-Wook
    • The Korean Journal of Financial Management
    • /
    • v.26 no.1
    • /
    • pp.165-188
    • /
    • 2009
  • This paper has suggested the methodology for the frontier portfolios and the optimal portfolio under the mean-VaR framework, not assuming the normal distribution and considering the investor's preferences for the higher moments of return distributions. It suggested the grid and rank approach which did not need an assumption about return distributions to find the frontier portfolios. And the optimal portfolio was selected using the utility function that considered the 3rd and the 4th moments. For the application of the methodology, weekly returns of the developed countries index, the emerging market index and the KOSPI index were used. After the frontier portfolios of the mean-variance framework and the mean-VaR framework were selected, the optimal portfolios of each framework were compared. This application compared not only the difference of the standard deviation but also the difference of the utility level and the certainty equivalent expressed by weekly expected returns. In order to verify statistical significances about the differences between the mean-VaR and the mean-variance, this paper presented the statistics which were obtained by the historical simulation method using the bootstrapping. The results showed that an investor under the mean-VaR framework had a tendency to select the optimal portfolio which has bigger standard deviation, comparing to an investor under the mean-variance framework. In addition, the more risk averse an investor is, the bigger utility level and certainty equivalent he achieves under the mean-VaR framework. However, the difference between the two frameworks were not significant in statistical as well as economic criterion.

  • PDF

Performance Comparison of Reinforcement Learning Algorithms for Futures Scalping (해외선물 스캘핑을 위한 강화학습 알고리즘의 성능비교)

  • Jung, Deuk-Kyo;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.697-703
    • /
    • 2022
  • Due to the recent economic downturn caused by Covid-19 and the unstable international situation, many investors are choosing the derivatives market as a means of investment. However, the derivatives market has a greater risk than the stock market, and research on the market of market participants is insufficient. Recently, with the development of artificial intelligence, machine learning has been widely used in the derivatives market. In this paper, reinforcement learning, one of the machine learning techniques, is applied to analyze the scalping technique that trades futures in minutes. The data set consists of 21 attributes using the closing price, moving average line, and Bollinger band indicators of 1 minute and 3 minute data for 6 months by selecting 4 products among futures products traded at trading firm. In the experiment, DNN artificial neural network model and three reinforcement learning algorithms, namely, DQN (Deep Q-Network), A2C (Advantage Actor Critic), and A3C (Asynchronous A2C) were used, and they were trained and verified through learning data set and test data set. For scalping, the agent chooses one of the actions of buying and selling, and the ratio of the portfolio value according to the action result is rewarded. Experiment results show that the energy sector products such as Heating Oil and Crude Oil yield relatively high cumulative returns compared to the index sector products such as Mini Russell 2000 and Hang Seng Index.