• Title/Summary/Keyword: Stock Prices

Search Result 385, Processing Time 0.026 seconds

The Stock Portfolio Recommendation System based on the Correlation between the Stock Message Boards and the Stock Market (인터넷 주식 토론방 게시물과 주식시장의 상관관계 분석을 통한 투자 종목 선정 시스템)

  • Lee, Yun-Jung;Kim, Gun-Woo;Woo, Gyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.441-450
    • /
    • 2014
  • The stock market is constantly changing and sometimes the stock prices unaccountably plummet or surge. So, the stock market is recognized as a complex system and the change on the stock prices is unpredictable. Recently, many researchers try to understand the stock market as the network among individual stocks and to find a clue about the change of the stock prices from big data being created in real time from Internet. We focus on the correlation between the stock prices and the human interactions in Internet especially in the stock message boards. To uncover this correlation, we collected and investigated the articles concerning with 57 target companies, members of KOSPI200. From the analysis result, we found that there is no significant correlation between the stock prices and the article volume, but the strength of correlation between the article volume and the stock prices is relevant to the stock return. We propose a new method for recommending stock portfolio base on the result of our analysis. According to the simulated investment test using the article data from the stock message boards in 'Daum' portal site, the returns of our portfolio is about 1.55% per month, which is about 0.72% and 1.21% higher than that of the Markowitz's efficient portfolio and that of the KOSPI average respectively. Also, the case using the data from 'Naver' portal site, the stock returns of our proposed portfolio is about 0.90%, which is 0.35%, 0.40%, and 0.58% higher than those of our previous portfolio, Markowitz's efficient portfolio, and KOSPI average respectively. This study presents that collective human behavior on Internet stock message board can be much helpful to understand the stock market and the correlation between the stock price and the collective human behavior can be used to invest in stocks.

Impact of Oil Price Shocks on Stock Prices by Industry (국제유가 충격이 산업별 주가에 미치는 영향)

  • Lee, Yun-Jung;Yoon, Seong-Min
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.233-260
    • /
    • 2022
  • In this paper, we analyzed how oil price fluctuations affect stock price by industry using the non-parametric quantile causality test method. We used weekly data of WTI spot price, KOSPI index, and 22 industrial stock indices from January 1998 to April 2021. The empirical results show that the effect of changes in oil prices on the KOSPI index was not significant, which can be attributed to mixed responses of diverse stock prices in several industries included in the KOSPI index. Looking at the stock price response to oil price by industry, the 9 of 18 industries, including Cloth, Paper, and Medicine show a causality with oil prices, while 9 industries, including Food, Chemical, and Non-metal do not show a causal relationship. Four industries including Medicine and Communication (0.45~0.85), Cloth (0.15~0.45), and Construction (0.5~0.6) show causality with oil prices more than three quantiles consecutively. However, the quantiles in which causality appeared were different for each industry. From the result, we find that the effects of oil price on the stock prices differ significantly by industry, and even in one industry, and the response to oil price changes is different depending on the market situation. This suggests that the government's macroeconomic policies, such as industrial and employment policies, should be performed in consideration of the differences in the effects of oil price fluctuations by industry and market conditions. It also shows that investors have to rebalance their portfolio by industry when oil prices fluctuate.

A Comparative Study between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles (SNS와 뉴스기사의 감성분석과 기계학습을 이용한 주가예측 모형 비교 연구)

  • Kim, Dongyoung;Park, Jeawon;Choi, Jaehyun
    • Journal of Information Technology Services
    • /
    • v.13 no.3
    • /
    • pp.221-233
    • /
    • 2014
  • Because people's interest of the stock market has been increased with the development of economy, a lot of studies have been going to predict fluctuation of stock prices. Latterly many studies have been made using scientific and technological method among the various forecasting method, and also data using for study are becoming diverse. So, in this paper we propose stock prices prediction models using sentiment analysis and machine learning based on news articles and SNS data to improve the accuracy of prediction of stock prices. Stock prices prediction models that we propose are generated through the four-step process that contain data collection, sentiment dictionary construction, sentiment analysis, and machine learning. The data have been collected to target newspapers related to economy in the case of news article and to target twitter in the case of SNS data. Sentiment dictionary was built using news articles among the collected data, and we utilize it to process sentiment analysis. In machine learning phase, we generate prediction models using various techniques of classification and the data that was made through sentiment analysis. After generating prediction models, we conducted 10-fold cross-validation to measure the performance of they. The experimental result showed that accuracy is over 80% in a number of ways and F1 score is closer to 0.8. The result can be seen as significantly enhanced result compared with conventional researches utilizing opinion mining or data mining techniques.

Time Series Stock Prices Prediction Based On Fuzzy Model (퍼지 모델에 기초한 시계열 주가 예측)

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.689-694
    • /
    • 2009
  • In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.

Nonparametric Stock Price Prediction (비모수 주가예측 모형)

  • Choi, Sung-Sup;Park, Joo-Hean
    • The Korean Journal of Financial Management
    • /
    • v.12 no.2
    • /
    • pp.221-237
    • /
    • 1995
  • When we apply parametric models to the movement of stock prices, we don't know whether they are really correct specifications. In the paper, any prior conditional mean structure is not assumed. By applying the nonparametric model, we see if it better performs (than the random walk model) in terms of out-of-sample prediction. An interesting finding is that the random walk model is still the best. There doesn't seem to exist any form of nonlinearity (not to mention linearity) in stock prices that can be exploitable in terms of point prediction.

  • PDF

The Analysis of the Stock Price Time Series using the Geometric Brownian Motion Model (기하브라우니안모션 모형을 이용한 주가시계열 분석)

  • 김진경
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.317-333
    • /
    • 1998
  • In this study, I employed the autoregressive model and the geometric Brownian motion model to analyze the recent stock prices of Korea. For all 7 series of stock prices(or index) the geometric Brownian motion model gives better predicted values compared with the autoregressive model when we use smaller number of observations.

  • PDF

Does Falling Oil Prices Impact Industrial Companies in the Gulf Cooperation Council Countries?

  • AL SAMMAN, Hazem;JAMIL, Syed Ahsan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.89-97
    • /
    • 2021
  • This research aims to investigate the impact of falling oil prices at the beginning of 2020 on 82 industrial companies listed on the GCC stock markets. The research sample period is divided into two periods pre-COVID and during COVID covering the period starting 1st January 2020 to May 15, 2020. The research uses the Panel Least Square (PLS) method and Panel Generalized Method of Moments (GMM) with fixed and random effects in each country. The results of GMM models reveal a positive relationship between oil prices and the share prices of industrial companies in the Gulf countries, which confirms that the share prices of industrial companies in the Gulf Cooperation Council (GCC) countries have been negatively affected by the decline in oil prices with the beginning of 2020. The findings show that the highest impact of falling oil prices has been recorded in the industrial companies in the kingdom of Saudi Arabia. However, the falling of oil prices does not have a significant effect on industrial companies in the state of Qatar. The research results suggest that GCC economies have to move on the path of non-reliance on Oil and gas-driven economy.

Interrelationships between KRW/JPY Real Exchange Rate and Stock Prices in Korea and Japan - Focus on Since Korea's Freely Flexible Exchange Rate System - (한·일 원/엔 실질 환율과 주가와의 관계 분석 - 한국의 자유변동환율제도 실시 이후를 중심으로 -)

  • Kim, Joung-Gu
    • International Area Studies Review
    • /
    • v.13 no.2
    • /
    • pp.277-297
    • /
    • 2009
  • This paper empirically investigates a long-run and short-run equilibrium relationships for exchange rate and stock prices in Korea and Japan from January 1998 to July 2008. Because using monthly data in my study, analyzes unit root test and VEC model including seasonality to overcome bias that happen in seasonal adjustment. The empirical evidence suggests that exists strong evidence supporting the long-run cointegration relationships between exchange rates and stock prices of the Korea and Japan. This implies that it is possible to predict one market from another for both countries, which seems to violate the efficient market hypothesis. In the long-run a negative relationship running from the KRW/JPY real exchange rate to the stock prices of Korea strongly argues for the traditional approach.

Testing the Information Content of Sustainability Reports for Telecommunications Companies in the Kingdom of Saudi Arabia

  • DIFALLA, Samhi Abdelaty;BELOUADAH, Fateh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.137-145
    • /
    • 2022
  • This study aims to test the information content of sustainability reports issued by the most significant telecommunications companies operating in the Kingdom of Saudi Arabia (Stc, Zain, and Mobily), and their compatibility with the national sustainability standards issued by the Ministry of Commerce in the Kingdom of Saudi Arabia in light of the Kingdom's vision 2030, and its impact on the stock exchange indices of these companies. The event study methodology was used to study the impact of publishing sustainability reports on stock prices and the trading volume of these companies' shares in the Saudi stock market during the period from (October 2020 to March 2021). The results indicate a significant impact of the information contained in the sustainability reports on stock prices and trading volume in the stock market, and the importance of directing the company's management towards more disclosure of information about sustainability in its environmental, social, and economic aspects instead of focusing only on information related to the financial performance and economic activity of the company. This encourages the listed companies to disclose the sustainability of the financial reports and standardize the form in which these disclosures are prepared.

Online news-based stock price forecasting considering homogeneity in the industrial sector (산업군 내 동질성을 고려한 온라인 뉴스 기반 주가예측)

  • Seong, Nohyoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.1-19
    • /
    • 2018
  • Since stock movements forecasting is an important issue both academically and practically, studies related to stock price prediction have been actively conducted. The stock price forecasting research is classified into structured data and unstructured data, and it is divided into technical analysis, fundamental analysis and media effect analysis in detail. In the big data era, research on stock price prediction combining big data is actively underway. Based on a large number of data, stock prediction research mainly focuses on machine learning techniques. Especially, research methods that combine the effects of media are attracting attention recently, among which researches that analyze online news and utilize online news to forecast stock prices are becoming main. Previous studies predicting stock prices through online news are mostly sentiment analysis of news, making different corpus for each company, and making a dictionary that predicts stock prices by recording responses according to the past stock price. Therefore, existing studies have examined the impact of online news on individual companies. For example, stock movements of Samsung Electronics are predicted with only online news of Samsung Electronics. In addition, a method of considering influences among highly relevant companies has also been studied recently. For example, stock movements of Samsung Electronics are predicted with news of Samsung Electronics and a highly related company like LG Electronics.These previous studies examine the effects of news of industrial sector with homogeneity on the individual company. In the previous studies, homogeneous industries are classified according to the Global Industrial Classification Standard. In other words, the existing studies were analyzed under the assumption that industries divided into Global Industrial Classification Standard have homogeneity. However, existing studies have limitations in that they do not take into account influential companies with high relevance or reflect the existence of heterogeneity within the same Global Industrial Classification Standard sectors. As a result of our examining the various sectors, it can be seen that there are sectors that show the industrial sectors are not a homogeneous group. To overcome these limitations of existing studies that do not reflect heterogeneity, our study suggests a methodology that reflects the heterogeneous effects of the industrial sector that affect the stock price by applying k-means clustering. Multiple Kernel Learning is mainly used to integrate data with various characteristics. Multiple Kernel Learning has several kernels, each of which receives and predicts different data. To incorporate effects of target firm and its relevant firms simultaneously, we used Multiple Kernel Learning. Each kernel was assigned to predict stock prices with variables of financial news of the industrial group divided by the target firm, K-means cluster analysis. In order to prove that the suggested methodology is appropriate, experiments were conducted through three years of online news and stock prices. The results of this study are as follows. (1) We confirmed that the information of the industrial sectors related to target company also contains meaningful information to predict stock movements of target company and confirmed that machine learning algorithm has better predictive power when considering the news of the relevant companies and target company's news together. (2) It is important to predict stock movements with varying number of clusters according to the level of homogeneity in the industrial sector. In other words, when stock prices are homogeneous in industrial sectors, it is important to use relational effect at the level of industry group without analyzing clusters or to use it in small number of clusters. When the stock price is heterogeneous in industry group, it is important to cluster them into groups. This study has a contribution that we testified firms classified as Global Industrial Classification Standard have heterogeneity and suggested it is necessary to define the relevance through machine learning and statistical analysis methodology rather than simply defining it in the Global Industrial Classification Standard. It has also contribution that we proved the efficiency of the prediction model reflecting heterogeneity.