Purpose - This paper's aim is to investigate whether or not gross profitability explains the cross-sectional variation of the stock returns in the Korean stock market. Gross profitability is an alternative profitability measure proposed by Novy-Marx in 2013 to predict cross-sectional variation of stock returns in the US. He shows that the gross profitability adds explanatory power to the Fama-French 3 factor model. Interestingly, gross profitability is negatively correlated with the book-to-market ratio. By confirming the gross profitability premium in the Korean stock market, we may provide some implications regarding the well-known value premium. In addition, our empirical results may provide opportunities for the fund distribution industry to promote brand new styles of funds. Research design, data, and methodology - For our empirical analysis, we collect monthly market prices of all the companies listed on the Korea Composite Stock Price Index (KOSPI) of the Korea Exchanges (KRX). Our sample period covers July1994 to December2014. The data from the company financial statementsare provided by the financial information company WISEfn. First, using Fama-Macbeth cross-sectional regression, we investigate the relation between gross profitability and stock return performance. For robustness in analyzing the performance of the gross profitability strategy, we consider value weighted portfolio returns as well as equally weighted portfolio returns. Next, using Fama-French 3 factor models, we examine whether or not the gross profitability strategy generates excess returns when firmsize and the book-to-market ratio are controlled. Finally, we analyze the effect of firm size and the book-to-market ratio on the gross profitability strategy. Results - First, through the Fama-MacBeth cross-sectional regression, we show that gross profitability has almost the same explanatory power as the book-to-market ratio in explaining the cross-sectional variation of the Korean stock market. Second, we find evidence that gross profitability is a statistically significant variable for explaining cross-sectional stock returns when the size and the value effect are controlled. Third, we show that gross profitability, which is positively correlated with stock returns and firm size, is negatively correlated with the book-to-market ratio. From the perspective of portfolio management, our results imply that since the gross profitability strategy is a distinctive growth strategy, value strategies can be improved by hedging with the gross profitability strategy. Conclusions - Our empirical results confirm the existence of a gross profitability premium in the Korean stock market. From the perspective of the fund distribution industry, the gross profitability portfolio is worthy of attention. Since the value strategy portfolio returns are negatively correlated with the gross profitability strategy portfolio returns, by mixing both portfolios, investors could be better off without additional risk. However, the profitable firms are dissimilar from the value firms (high book-to-market ratio firms); therefore, an alternative factor model including gross profitability may help us understand the economic implications of the well-known anomalies such as value premium, momentum, and low volatility. We reserve these topics for future research.
Journal of the Korea Academia-Industrial cooperation Society
/
v.1
no.2
/
pp.85-92
/
2000
Warrants are often described as call potions written tv firms on their own stock. However, a call option is a pure side bet; i.e., none of the cash flows associated with the call's sale or exercise involves the firm. Issuing warrants on the other hand, can affect the firm's aggregate level of investment, composition of its capital structure. and the price of the stock on which warrant can be exercised. The problem of the warrant pricing can be solved by using of multivariate data analysis techniques, such as regression analysis or discriminant analysis, instead of OPM. The value of this approach is that we can evlauate the relative importance of each independent variable which affect a price of a warrant. This study empirically examines the Japanese warrant pricing by multiple regression analysis using a sample or 300 observations traded on Tokyo Stock Exchange during the periods between 1995 and 1996.
The Journal of Asian Finance, Economics and Business
/
v.8
no.1
/
pp.237-246
/
2021
This paper explores the relationship between price mechanism and flipping activity of initial public offerings (IPOs) in Pakistan's emerging economy. This study uses a cross-sectional data set of 95 firms listed on Pakistan Stock Exchange from 2000 to 2019. This study employs the ordinary least square and quantile regression techniques to capture the relationship between price mechanism and flipping activity. The results show that book-built IPOs flip substantially less than fixed-price IPOs. This is consistent with the signaling theory assertion that roadshows are arranged by underwriters to capture investors' demand and set the offer prices of IPOs. If investors learn the fair values of quality IPOs, then the offer prices will be close to the intrinsic values, thus reducing flipping. The findings also provide conclusive evidence for understanding the usefulness of and the more relevant information regarding the pricing mechanism. In particular, it provides a better understanding of how companies actually use the pricing mechanism information in the flipping of IPO shares. The results of this study are also valuable to underwriters, and regulators, for instance, provides underwriters with the discretion to allocate the IPO shares and the SECP, in revising regulation on the disclosure of IPO pricing methods.
This paper present s a pattern generation scheme from financial charts. The patterns constitute knowledge which consists of patterns as the conditional part and the impact of the pattern as the conclusion part. The patterns in charts are represented in a syntactic approach. If the pattern elements and the impact of patterns are defined, the patterns are synthesized from simple to the more highly credible by evaluating each intermediate pattern from the instances. The overall process is divided into primitive discovery by Genetic Algorithms and pattern synthesis from the discovered primitives by the Syntactic Pattern-based Inductive Learning (SYNPLE) algorithm which we have developed. We have applied the scheme to a chart : the trend lines of stock price in daily base. The scheme can generate very credible patterns from training data sets.
The purpose of this study is to verify information spillover effects using returns of macroeconomic variables and hotel leisure stock index daily data from January 4, 2000 to December 30, 2015. The findings and implications of the research can be summarized as follows. First, based on time-varying AR(1)-GARCH(1,1) models no evidence of statistically significant conditional mean and volatility spillover effects from returns of macroeconomic variables on the hotel leisure stock index was observed. In addition, no evidence of price volatility spillover from macroeconomic variables on the hotel leisure market was observed. Second, it was discovered that there exists a significantly negative relationship between the return of ER and hotel leisure stock prices, but a positive relationship between the KOSPI and hotel leisure stock prices. Finally, the study also found that was a significantly positive relationship between the volatility of DUB and hotel leisure market, and an adversely negative relationship between the volatility of ER and hotel leisure market. The results of this study are expected to contribute by providing useful information for investment strategies, as well as for risk management for investors and managers.
Hidden Markov model (HMM) is a statistical model in which the system consists of two elements, hidden states and observable results. HMM has been actively used in various fields, especially for time series data in the financial sector, since it has a variety of mathematical structures. Based on the HMM theory, this research is intended to apply the domestic KOSPI200 stock index as well as the prediction of global stock indexes such as NIKKEI225, HSI, S&P500 and FTSE100. In addition, we would like to compare and examine the differences in results between the HMM and support vector regression (SVR), which is frequently used to predict the stock price, due to recent developments in the artificial intelligence sector.
Proceedings of the Korean Operations and Management Science Society Conference
/
2002.05a
/
pp.1059-1065
/
2002
주가자료를 활용한 부도예측모형인 KMV EDF 모형을 기반으로 일별주가자료와 기업재무자료를 이용하여, 모형에 필요한 적절한 모수를 찾고 모델링을 하였으며, 적절성을 검증했다. 그리고, 기존의 연구에 따라 월평균주가자료를 이용한 경우, 모형에 왜곡이 가해질 수 있다는 점을 지적했다. 또한, 민감도 분석을 통하여 본 모형의 부도예측값에 미치는 주요한 검증하고, 실용적으로 사용할 수 있는 간단한 민감도분석 Tool을 설계하였다.
This study investigates the dynamic relationship between KOSPI200 stock index and stock index futures and stock index option markets which is its derived from KOSPI200 stock index. We use 5-minutes rate of return data from 2012. 06 to 2014. 12. To empirical analysis, this study use autocorrelation and cross-correlation analysis as a preliminary analysis and then following Stoll and Whaley(1990) and Chan(1992), the multiple regression is estimated to examine the lead-lag patterns between the stock index and stock index futures and option markets by Newey and West's(1987) Empirical results of our study shows as follows. First, there exist a strong autocorrelation in the KOSPI200 stock index before 10minutes but a very weak autocorrelation in the stock index futures and option markets. Second, there is a strong evidence that stock index future and option markets lead KOSPI200 stock index in the cross-correlation analysis. Third, based on the multiple regression, the stock index futures and option markets lead the stock index prior to 10-15 minutes and weak evidence that the stock index leads the future and option markets. This results show that the market efficient of KOSPI200 stock index market is improved as compared to the early stage of stock index future and option market.
From the research which it sees verification of the whole interpretation and local interpretation of the durability steel deck bridge a static test and it produces the test body which it sells with character and it executes smallness pul lek detailed interpretation it leads and the appropriate characteristic of smallness pul lek detailed interpretation and to sleep a nominal stress price and it compares it judges it does. The stress quality from each structure region which it follows in load stock location it analyzes and from the hazard which evaluates, the objective region the length rib and the bottom grater weld zone, the length rib and width rib connection department and the width rib with the father it divided. It investigated the stress distribution of the test body from these objective location, FEM interpretation it led and the conduct against each structure state tax it analyzed. General conduct the load stock location the floor plate is located in the center with interpretation price together symmetry characteristic to seem, it cannot be like that it cannot there is one actual test price. Like this reason the length rib and width rib connection actually production even production characteristic security it is a day when it is impossible with the curvature junction department which it blows, it follows in examination body deferment condition and form feed with the fact that it is visible a big difference even with error of some it becomes. Consequently for a data and the research which are more accurate it is judged with the fact that the effort which is prudent will be necessary.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.1
/
pp.32-41
/
2023
Recently, many studies are being conducted to extract emotion from text and verify its information power in the field of finance, along with the recent development of big data analysis technology. A number of prior studies use pre-defined sentiment dictionaries or machine learning methods to extract sentiment from the financial documents. However, both methods have the disadvantage of being labor-intensive and subjective because it requires a manual sentiment learning process. In this study, we developed a financial sentiment dictionary that automatically extracts sentiment from the body text of analyst reports by using modified Bayes rule and verified the performance of the model through a binary classification model which predicts actual stock price movements. As a result of the prediction, it was found that the proposed financial dictionary from this research has about 4% better predictive power for actual stock price movements than the representative Loughran and McDonald's (2011) financial dictionary. The sentiment extraction method proposed in this study enables efficient and objective judgment because it automatically learns the sentiment of words using both the change in target price and the cumulative abnormal returns. In addition, the dictionary can be easily updated by re-calculating conditional probabilities. The results of this study are expected to be readily expandable and applicable not only to analyst reports, but also to financial field texts such as performance reports, IR reports, press articles, and social media.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.