• Title/Summary/Keyword: Stochastic order

Search Result 581, Processing Time 0.021 seconds

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

Nonlinear stochastic optimal control strategy of hysteretic structures

  • Li, Jie;Peng, Yong-Bo;Chen, Jian-Bing
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.39-63
    • /
    • 2011
  • Referring to the formulation of physical stochastic optimal control of structures and the scheme of optimal polynomial control, a nonlinear stochastic optimal control strategy is developed for a class of structural systems with hysteretic behaviors in the present paper. This control strategy provides an amenable approach to the classical stochastic optimal control strategies, bypasses the dilemma involved in It$\hat{o}$-type stochastic differential equations and is applicable to the dynamical systems driven by practical non-stationary and non-white random excitations, such as earthquake ground motions, strong winds and sea waves. The newly developed generalized optimal control policy is integrated in the nonlinear stochastic optimal control scheme so as to logically distribute the controllers and design their parameters associated with control gains. For illustrative purposes, the stochastic optimal controls of two base-excited multi-degree-of-freedom structural systems with hysteretic behavior in Clough bilinear model and Bouc-Wen differential model, respectively, are investigated. Numerical results reveal that a linear control with the 1st-order controller suffices even for the hysteretic structural systems when a control criterion in exceedance probability performance function for designing the weighting matrices is employed. This is practically meaningful due to the nonlinear controllers which may be associated with dynamical instabilities being saved. It is also noted that using the generalized optimal control policy, the maximum control effectiveness with the few number of control devices can be achieved, allowing for a desirable structural performance. It is remarked, meanwhile, that the response process and energy-dissipation behavior of the hysteretic structures are controlled to a certain extent.

Joint Replenishment Problem for Single Buyer and Single Supplier System Having the Stochastic Demands (확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제)

  • Jeong, Won-Chan;Kim, Jong-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.3
    • /
    • pp.91-105
    • /
    • 2011
  • In this paper, we analyze a logistic system involving a supplier who produces and delivers multiple types of items and a buyer who receives and sells the products to end customers. The buyer controls the inventory level by replenishing each product item up to a given order-up-to-level to cope with stochastic demand of end customers. In response to the buyer's order, the supplier produces or outsources the ordered item and delivers them at the start of each period. For the system described above, a mathematical model for a single type of item was developed from the buyer's perspective. Based on the model, an efficient method to find the cycle length and safety factor which correspond to a local minimum solution is proposed. This single product model was extended to cover a multiple item situation. From the model, algorithms to decide the base cycle length and order interval of each item were proposed. The results of the computational experiment show that the algorithms were able to determine the global optimum solution for all tested cases within a reasonable amount of time.

A Formulation for Response Variability of Plates Considering Multiple Random Parameters (다중 불확실 인수를 고려한 평판의 응답변화도 산정 정식화)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.789-799
    • /
    • 2007
  • In this paper, we propose a stochastic finite element formulation which takes into account the randonmess in the material and geometrical parameters. The formulation is proposed for plate structures, and is based on the weighted integral approach. Contrary to the case of elastic modulus, plate thickness contributes to the stiffness as a third-order function. Furthermore, Poisson's ratio is even more complex since this parameter appears in the constitutive relations in the fraction form. Accordingly, we employ Taylor's expansion to derive decomposed stochastic field functions in ascending order. In order to verify the proposed formulation, the results obtained using the proposed scheme are compared with those in the literature and those of Monte Carlo analysis as well.

Probability density evolution analysis on dynamic response and reliability estimation of wind-excited transmission towers

  • Zhang, Lin-Lin;Li, Jie
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.45-60
    • /
    • 2007
  • Transmission tower is a vital component in electrical system. In order to accurately compute the dynamic response and reliability of transmission tower under the excitation of wind loading, a new method termed as probability density evolution method (PDEM) is introduced in the paper. The PDEM had been proved to be of high accuracy and efficiency in most kinds of stochastic structural analysis. Consequently, it is very hopeful for the above needs to apply the PDEM in dynamic response of wind-excited transmission towers. Meanwhile, this paper explores the wind stochastic field from stochastic Fourier spectrum. Based on this new viewpoint, the basic random parameters of the wind stochastic field, the roughness length $z_0$ and the mean wind velocity at 10 m heigh $U_{10}$, as well as their probability density functions, are investigated. A latticed steel transmission tower subject to wind loading is studied in detail. It is shown that not only the statistic quantities of the dynamic response, but also the instantaneous PDF of the response and the time varying reliability can be worked out by the proposed method. The results demonstrate that the PDEM is feasible and efficient in the dynamic response and reliability analysis of wind-excited transmission towers.

Availability Analysis of 2N Redundancy System Using Stochastic Models (안정적인 서비스를 위한 2N 이중화 모델의 가용도 분석)

  • Kim, Dong Hyun;Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2634-2639
    • /
    • 2014
  • The idea of redundancy is used in order to improve the availability of networks and systems and there are various methods for implementing redundancy. To perform the availability analysis various stochastic models have been used. In this paper, 2N redundancy with one active service unit and one standby service unit is considered. To evaluate the expected availability, we model 2N redundancy using Stochastic Reward Nets. This model can be solved using the SPNP package.

Comparison of the Korean and US Stock Markets Using Continuous-time Stochastic Volatility Models

  • CHOI, SEUNGMOON
    • KDI Journal of Economic Policy
    • /
    • v.40 no.4
    • /
    • pp.1-22
    • /
    • 2018
  • We estimate three continuous-time stochastic volatility models following the approach by Aït-Sahalia and Kimmel (2007) to compare the Korean and US stock markets. To do this, the Heston, GARCH, and CEV models are applied to the KOSPI 200 and S&P 500 Index. For the latent volatility variable, we generate and use the integrated volatility proxy using the implied volatility of short-dated at-the-money option prices. We conduct MLE in order to estimate the parameters of the stochastic volatility models. To do this we need the transition probability density function (TPDF), but the true TPDF is not available for any of the models in this paper. Therefore, the TPDFs are approximated using the irreducible method introduced in Aït-Sahalia (2008). Among three stochastic volatility models, the Heston model and the CEV model are found to be best for the Korean and US stock markets, respectively. There exist relatively strong leverage effects in both countries. Despite the fact that the long-run mean level of the integrated volatility proxy (IV) was not statistically significant in either market, the speeds of the mean reversion parameters are statistically significant and meaningful in both markets. The IV is found to return to its long-run mean value more rapidly in Korea than in the US. All parameters related to the volatility function of the IV are statistically significant. Although the volatility of the IV is more elastic in the US stock market, the volatility itself is greater in Korea than in the US over the range of the observed IV.

Separation-hybrid models for simulating nonstationary stochastic turbulent wind fields

  • Long Yan;Zhangjun Liu;Xinxin Ruan;Bohang Xu
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • In order to effectively simulate nonstationary stochastic turbulent wind fields, four separation hybrid (SEP-H) models are proposed in the present study. Based on the assumption that the lateral turbulence component at one single-point is uncorrelated with the longitudinal and vertical turbulence components, the fluctuating wind is separated into 2nV-1D and nV1D nonstationary stochastic vector processes. The first process can be expressed as double proper orthogonal decomposition (DPOD) or proper orthogonal decomposition and spectral representation method (POD-SRM), and the second process can be expressed as POD or SRM. On this basis, four SEP-H models of nonstationary stochastic turbulent wind fields are developed. In addition, the orthogonal random variables in the SEP-H models are presented as random orthogonal functions of elementary random variables. Meanwhile, the number theoretical method (NTM) is conveniently adopted to select representative points set of the elementary random variables. The POD-FFT (Fast Fourier transform) technique is introduced in frequency to give full play to the computational efficiency of the SEP-H models. Finally, taking a long-span bridge as the engineering background, the SEP-H models are compared with the dimension-reduction DPOD (DR-DPOD) model to verify the effectiveness and superiority of the proposed models.

Application of the first-order perturbation method to optimal structural design

  • Lee, Byung Woo;Lim, O Kaung
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.425-436
    • /
    • 1996
  • An application of the perturbation method to optimum structural design with random parameters is presented. It is formulated on the basis of the first-order stochastic finite element perturbation method. It also takes into full account the stress, displacement and eigenvalue constraints, together with the rates of change of the random variables. A method for calculating the sensitivity coefficients in regard to the governing equation and the first-order perturbed equation has been derived, by using a direct differentiation approach. A gradient-based nonlinear programming technique is used to solve the problem. The numerical results are specifically noted, where the stiffness parameter and external load are treated as random variables.

Tabu Search-Genetic Process Mining Algorithm for Discovering Stochastic Process Tree (확률적 프로세스 트리 생성을 위한 타부 검색 -유전자 프로세스 마이닝 알고리즘)

  • Joo, Woo-Min;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.183-193
    • /
    • 2019
  • Process mining is an analytical technique aimed at obtaining useful information about a process by extracting a process model from events log. However, most existing process models are deterministic because they do not include stochastic elements such as the occurrence probabilities or execution times of activities. Therefore, available information is limited, resulting in the limitations on analyzing and understanding the process. Furthermore, it is also important to develop an efficient methodology to discover the process model. Although genetic process mining algorithm is one of the methods that can handle data with noises, it has a limitation of large computation time when it is applied to data with large capacity. To resolve these issues, in this paper, we define a stochastic process tree and propose a tabu search-genetic process mining (TS-GPM) algorithm for a stochastic process tree. Specifically, we define a two-dimensional array as a chromosome to represent a stochastic process tree, fitness function, a procedure for generating stochastic process tree and a model trace as a string of activities generated from the process tree. Furthermore, by storing and comparing model traces with low fitness values in the tabu list, we can prevent duplicated searches for process trees with low fitness value being performed. In order to verify the performance of the proposed algorithm, we performed a numerical experiment by using two kinds of event log data used in the previous research. The results showed that the suggested TS-GPM algorithm outperformed the GPM algorithm in terms of fitness and computation time.