• Title/Summary/Keyword: Stochastic optimization method

Search Result 210, Processing Time 0.028 seconds

Dynamic Island Partition for Distribution System with Renewable Energy to Decrease Customer Interruption Cost

  • Zhu, Junpeng;Gu, Wei;Jiang, Ping;Song, Shan;Liu, Haitao;Liang, Huishi;Wu, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2146-2156
    • /
    • 2017
  • When a failure occurs in active distribution system, it will be isolated through the action of circuit breakers and sectionalizing switches. As a result, the network might be divided into several connected components, in which distributed generations could supply power for customers. Aimed at decreasing customer interruption cost, this paper proposes a theoretically optimal island partition model for such connected components, and a simplified but more practical model is also derived. The model aims to calculate a dynamic island partition schedule during the failure recovery time period, instead of a static islanding status. Fluctuation and stochastic characteristics of the renewable distributed generations and loads are considered, and the interruption cost functions of the loads are fitted. To solve the optimization model, a heuristic search algorithm based on the hill climbing method is proposed. The effectiveness of the proposed model and algorithm is evaluated by comparing with an existing static island partitioning model and intelligent algorithms, respectively.

Optimization Algorithm for Spectrum Sensing Delay Time in Cognitive Radio Networks Using Decoding Forward Relay

  • Xia, Kaili;Jiang, Xianyang;Yao, Yingbiao;Tang, Xianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1301-1312
    • /
    • 2020
  • Using decode-and-forward relaying in the cognitive radio networks, the spectrum efficiency can improve furthermore. The optimization algorithm of the spectrum sensing estimation time is presented for the cognitive relay networks in this paper. The longer sensing time will bring two aspects of the consequences. On the one hand, the channel parameters are estimated more accurate so as to reduce the interferences to the authorized users and to improve the throughput of the cognitive users. On the other hand, it shortens the transmission time so as to decease the system throughput. In this time, it exists an optimal sensing time to maximize the throughput. The channel state information of the sub-bands is considered as the exponentially distributed, so a stochastic programming method is proposed to optimize the sensing time for the cognitive relay networks. The computer simulation results using the Matlab software show that the algorithm is effective, which has a certain engineering application value.

The Robust Artillery Locating Radar Deployment Model Against Enemy' s Attack Scenarios (적 공격시나리오 기반 대포병 표적탐지레이더 배치모형)

  • Lee, Seung-Ryul;Lee, Moon-Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.217-228
    • /
    • 2020
  • The ROK Army must detect the enemy's location and the type of artillery weapon to respond effectively at wartime. This paper proposes a radar positioning model by applying a scenario-based robust optimization method i.e., binary integer programming. The model consists of the different types of radar, its available quantity and specification. Input data is a combination of target, weapon types and enemy position in enemy's attack scenarios. In this scenario, as the components increase by one unit, the total number increases exponentially, making it difficult to use all scenarios. Therefore, we use partial scenarios to see if they produce results similar to those of the total scenario, and then apply them to case studies. The goal of this model is to deploy an artillery locating radar that maximizes the detection probability at a given candidate site, based on the probability of all possible attack scenarios at an expected enemy artillery position. The results of various experiments including real case study show the appropriateness and practicality of our proposed model. In addition, the validity of the model is reviewed by comparing the case study results with the detection rate of the currently available radar deployment positions of Corps. We are looking forward to enhance Korea Artillery force combat capability through our research.

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

Study on Estimations of Initial Mass Fractions of CH4/O2 in Diffusion-Controlled Turbulent Combustion Using Inverse Analysis (확산지배 난류 연소현상에서 역해석을 이용한 CH4/O2의 초기 질량분율 추정에 관한 연구)

  • Lee, Kyun-Ho;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.679-688
    • /
    • 2010
  • The major objective of the present study is to extend the applications of inverse analysis to more realistic engineering fields with a complex combustion process rather than the traditional simple heat-transfer problems. In order to do this, the unknown initial mass fractions of $CH_4/O_2$ are estimated from the temperature measurement data by inverse analysis in the practical diffusion-controlled turbulent combustion problem. In order to ensure efficient inverse analysis, the repulsive particle swarm optimization (RPSO) method, which belongs to the class of stochastic evolutionary global optimization methods, is implemented as an inverse solver. Based on this study, it is expected that useful information can be obtained when inverse analysis is used in the diagnosis, design, or optimization of real combustion systems involving unknown parameters.

A Synchronized Job Assignment Model for Manual Assembly Lines Using Multi-Objective Simulation Integrated Hybrid Genetic Algorithm (MO-SHGA) (다목적 시뮬레이션 통합 하이브리드 유전자 알고리즘을 사용한 수동 조립라인의 동기 작업 모델)

  • Imran, Muhammad;Kang, Changwook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.211-220
    • /
    • 2017
  • The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.

A Design and Analysis of Improved Firefly Algorithm Based on the Heuristic (휴리스틱에 의하여 개선된 반딧불이 알고리즘의 설계와 분석)

  • Rhee, Hyun-Sook;Lee, Jung-Woo;Oh, Kyung-Whan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.39-44
    • /
    • 2011
  • In this paper, we propose a method to improve the Firefly Algorithm(FA) introduced by Xin-She Yang, recently. We design and analyze the improved firefly algorithm based on the heuristic. We compare the FA with the Particle Swarm Optimization (PSO) which the problem domain is similar with the FA in terms of accuracy, algorithm convergence time, the motion of each particle. The compare experiments show that the accuracy of FA is not worse than PSO's, but the convergence time of FA is slower than PSO's. In this paper, we consider intuitive reasons of slow convergence time problem of FA, and propose the improved version of FA using a partial mutation heuristic based on the consideration. The experiments using benchmark functions show the accuracy and convergence time of the improved FA are better than them of PSO and original FA.

Ellipsoidal bounds for static response of framed structures against interactive uncertainties

  • Kanno, Yoshihiro;Takewaki, Izuru
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • This paper presents an optimization-based method for computing a minimal bounding ellipsoid that contains the set of static responses of an uncertain braced frame. Based on a non-stochastic modeling of uncertainty, we assume that the parameters both of brace stiffnesses and external forces are uncertain but bounded. A brace member represents the sum of the stiffness of the actual brace and the contributions of some non-structural elements, and hence we assume that the axial stiffness of each brace is uncertain. By using the $\mathcal{S}$-lemma, we formulate a semidefinite programming (SDP) problem which provides an outer approximation of the minimal bounding ellipsoid. The minimum bounding ellipsoids are computed for a braced frame under several uncertain circumstances.

APPROXIMATE ANALYSIS OF AN N-DESIGN CALL CENTER WITH TWO TYPES OF AGENTS

  • Park, Chul-Geun;Han, Dong-Hwan;Baik, Kwang-Hyun
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1021-1035
    • /
    • 2008
  • In this paper, we analyze an N-design call center with skill-based routing, in which one pool of agents handles two types of calls and another pool of agents handles only one type of calls. The approximate analysis is motivated by a computational complexity that has been observed in the direct stochastic approach and numerical method for finding performance measures. The workforce staffing policy is very important to the successful management of call centers. So the allocation scheduling of the agents can be considered as the optimization problem of the corresponding queueing system to the call center. We use a decomposition algorithm which divides the state space of the queueing system into the subspaces for the approximate analysis of the N-design call center with two different types of agents. We also represent some numerical examples and show the impact of the system parameters on the performance measures.

  • PDF

Preventing Premature Convergence in Genetic Algorithms with Adaptive Population Size (유전자 집단의 크기 조절을 통한 Genetic Algorithm의 조기 포화 방지)

  • 박래정;박철훈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1680-1686
    • /
    • 1995
  • GAs, effective stochastic search algorithms based on the model of natural evolution and genetics, have been successfully applied to various optimization problems. When population size is not large, GAs often suffer from the phenomenon of premature convergence in which all chromosomes in the population lose the diversity of genes before they find the optimal solution. In this paper, we propose that a new heuristic that maintains the diversity of genes by adding some chromosomes with random mutation and selective mutation into population during evolution. And population size changes dynamically with supplement of new chromosomes. Experimental results for several test functions show that when population size is rather small and the length of chromosome is not long, this method is effective.

  • PDF