• 제목/요약/키워드: Stochastic optimization

Search Result 386, Processing Time 0.031 seconds

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

Structural Optimization Using Tabu Search in Discrete Design Space (타부탐색을 이용한 이산설계공간에서의 구조물의 최적설계)

  • Lee, Kwon-Hee;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.798-806
    • /
    • 2003
  • Structural optimization has been carried out in continuous or discrete design space. Methods for continuous design have been well developed though they are finding the local optima. On the contrary, the existing methods for discrete design are extremely expensive in computational cost or not robust. In this research, an algorithm using tabu search is developed fur the discrete structural designs. The tabu list and the neighbor function of the Tabu concepts are introduced to the algorithm. It defines the number of steps, the maximum number for random searches and the stop criteria. A tabu search is known as the heuristic approach while genetic algorithm and simulated annealing algorithm are attributed to the stochastic approach. It is shown that an algorithm using the tabu search with random moves has an advantage of discrete design. Furthermore, the suggested method finds the reliable optimum for the discrete design problems. The existing tabu search methods are reviewed. Subsequently, the suggested method is explained. The mathematical problems and structural design problems are investigated to show the validity of the proposed method. The results of the structural designs are compared with those from a genetic algorithm and an orthogonal array design.

Optimization of Mutual Information for Multiresolution Image Registration (다해상도 영상정합을 위한 상호정보 최적화)

  • Hong, Helen;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.1
    • /
    • pp.37-49
    • /
    • 2001
  • We propose an optimization of mutual information for multiresolution image registration to represent useful information as integrated form obtaining from complementary information of multi modality images. The method applies mutual information as cost function to measure the statistical dependency or information redundancy between the image intensities of corresponding pixels in both images, which is assumed to be maximal if the images are geometrically aligned. As experimental results we validate visual inspection for accuracy, changning initial condition and addictive noise for robustness. Since our method uses the native image rather than prior feature extraction, few user interaction is required to perform the registration. In addition it leads to robust density estimation and convergence as applying non-parametric density estimation and stochastic multiresolution optimization.

  • PDF

Evaluation of the Charging effects of Plug-in Electrical Vehicles on Power Systems, taking Into account Optimal Charging Scenarios (전기자동차의 충전부하 모델링 및 충전 시나리오에 따른 전력계통 평가)

  • Moon, Sang-Keun;Gwak, Hyeong-Geun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.783-790
    • /
    • 2012
  • Electric Vehicles(EVs) and Plug-in Hybrid Electric Vehicles(PHEVs) which have the grid connection capability, represent an important power system issue of charging demands. Analyzing impacts EVs charging demands of the power system such as increased peak demands, developed by means of modeling a stochastic distribution of charging and a demand dispatch calculation. Optimization processes proposed to determine optimal demand distribution portions so that charging costs and demand can possibly be managed. In order to solve the problems due to increasing charging demand at the peak time, alternative electricity rate such as Time-of-Use(TOU) rate has been in effect since last year. The TOU rate would in practice change the tendencies of charging time at the peak time. Nevertheless, since it focus only minimizing costs of charging from owners of the EVs, loads would be concentrated at times which have a lowest charging rate and would form a new peak load. The purpose of this paper is that to suggest a scenario of load leveling for a power system operator side. In case study results, the vehicles as regular load with time constraints, battery charging patterns and changed daily demand in the charging areas are investigated and optimization results are analyzed regarding cost and operation aspects by determining optimal demand distribution portions.

Cooperative Detection of Moving Source Signals in Sensor Networks (센서 네트워크 환경에서 움직이는 소스 신호의 협업 검출 기법)

  • Nguyen, Minh N.H.;Chuan, Pham;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.726-732
    • /
    • 2017
  • In practical distributed sensing and prediction applications over wireless sensor networks (WSN), environmental sensing activities are highly dynamic because of noisy sensory information from moving source signals. The recent distributed online convex optimization frameworks have been developed as promising approaches for solving approximately stochastic learning problems over network of sensors in a distributed manner. Negligence of mobility consequence in the original distributed saddle point algorithm (DSPA) could strongly affect the convergence rate and stability of learning results. In this paper, we propose an integrated sliding windows mechanism in order to stabilize predictions and achieve better convergence rates in cooperative detection of a moving source signal scenario.

Genetic Algorithms for Optimal Augmentation of Water Distribution Networks (유전자 알고리즘을 이용한 배수관망의 최적 확장 설계)

  • Lee, Seung-Cheol;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • A methodology is developed for designing the minimum-cost water distribution network. The method is based on network simulations and an optimization scheme using genetic algorithms. Being a stochastic optimization scheme, genetic algorithms have advantages over the conventional search algorithms in solving network problems known for their nonlinearities and herculean computational costs. While existing methods focus on the design of either entirely new or parallel augmentation of network systems, the proposed method can be applied to problems having both new branches of tree-type and paralle augmentation in loops. The applicability of the method was shown through a case study for Baekryeon water supply system. The optimized design resulted in the maximum 5.37% savings compared to the conventional design without optimization, while meeting the hydraulic constraints.

  • PDF

Parametric Optimization Procedure for Robust Flight Control System Design

  • Tunik, Anatol A.;Ryu, Hyeok;Lee, Hae-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.95-107
    • /
    • 2001
  • This paper is devoted to the parameter optimization of unmanned aerial vehicle's (UAV) flight control laws. Optimization procedure is based on the ideas of mixed $H_2/H_{\infty}$ control of multi-model plants. By using this approach, some partial $H_2$-terms defining the performance of nominal and parametrically perturbed Flight Control System (FCS) responses to deterministic command signals in stochastic atmosphere as well as $H_{\infty}$-terms defining robustness of the FCS can be incorporated in the composite cost function. Special penalty function imposed on the location of closed-loop system's poles keeps the speed of response and oscillatory properties for both nominal and perturbed FCS in reasonable limits. That is the reason why this procedure may provide reasonable trade-off between the performance and robustness of FCS that are very important especially for UAV. Its practical importance is illustrated by case studies of lateral and longitudinal control of small UAV.

  • PDF

The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithms (유전자 알고리즘에 의한 드릴싱 머신의 설계 최적화 연구)

  • Baek, Woon-Tae;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.24-29
    • /
    • 1997
  • Recently, Genetic Algorithm(GA), which is a stochastic direct search strategy that mimics the process of genetic evolution, is widely adapted into a search procedure for structural optimization. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA is very simple in their algorithms and there is no need of continuity of functions(or functionals) any more in GA. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher porbability of convergence to global optimum compared to traditional techniques which take one-point search method. The methods consist of three genetics opera- tions named selection, crossover and mutation. In this study, a method of finding the omtimum size and topology of drilling machine is proposed by using the GA, For rapid converge to optimum, elitist survival model,roulette wheel selection with limited candidates, and multi-point shuffle cross-over method are adapted. And pseudo object function, which is the combined form of object function and penalty function, is used to include constraints into fitness function. GA shows good results of weight reducing effect and convergency in optimal design of drilling machine.

  • PDF