• Title/Summary/Keyword: Stochastic System Reduction

Search Result 43, Processing Time 0.028 seconds

A refinement and abstraction method of the SPZN formal model for intelligent networked vehicles systems

  • Yang Liu;Yingqi Fan;Ling Zhao;Bo Mi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.64-88
    • /
    • 2024
  • Security and reliability are the utmost importance facts in intelligent networked vehicles. Stochastic Petri Net and Z (SPZN) as an excellent formal verification tool for modeling concurrent systems, can effectively handles concurrent operations within a system, establishes relationships among components, and conducts verification and reasoning to ensure the system's safety and reliability in practical applications. However, the application of a system with numerous nodes to Petri Net often leads to the issue of state explosion. To tackle these challenges, a refinement and abstraction method based on SPZN is proposed in this paper. This approach can not only refine and abstract the Stochastic Petri Net but also establish a corresponding relationship with the Z language. In determining the implementation rate of transitions in Stochastic Petri Net, we employ the interval average and weighted average method, which significantly reduces the time and space complexity compared to alternative techniques and is suitable for expert systems at various levels. This reduction facilitates subsequent comprehensive system analysis and module analysis. Furthermore, by analyzing the properties of Markov Chain isomorphism in the case study, recommendations for minimizing system risks in the application of intelligent parking within the intelligent networked vehicle system can be put forward.

Monte Carlo analysis of earthquake resistant R-C 3D shear wall-frame structures

  • Taskin, Beyza;Hasgur, Zeki
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.371-399
    • /
    • 2006
  • The theoretical background and capabilities of the developed program, SAR-CWF, for stochastic analysis of 3D reinforced-concrete shear wall-frame structures subject to seismic excitations is presented. Incremental stiffness and strength properties of system members are modeled by extended Roufaiel-Meyer hysteretic relation for bending while shear deformations for walls by Origin-Oriented hysteretic model. For the critical height of shear-walls, division to sub-elements is performed. Different yield capacities with respect to positive and negative bending, finite extensions of plastic hinges and P-${\delta}$ effects are considered while strength deterioration is controlled by accumulated hysteretic energy. Simulated strong motions are obtained from a Gaussian white-noise filtered through Kanai-Tajimi filter. Dynamic equations of motion for the system are formed according to constitutive and compatibility relations and then inserted into equivalent It$\hat{o}$-Stratonovich stochastic differential equations. A system reduction scheme based on the series expansion of eigen-modes of the undamaged structure is implemented. Time histories of seismic response statistics are obtained by utilizing the computer programs developed for different types of structures.

An Application of Variance Reduction Technique for Stochastic Network Reliability Evaluation (확률적 네트워크의 신뢰도 평가를 위한 분산 감소기법의 응용)

  • 하경재;김원경
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.2
    • /
    • pp.61-74
    • /
    • 2001
  • The reliability evaluation of the large scale network becomes very complicate according to the growing size of network. Moreover if the reliability is not constant but follows probability distribution function, it is almost impossible to compute them in theory. This paper studies the network evaluation methods in order to overcome such difficulties. For this an efficient path set algorithm which seeks the path set connecting the start and terminal nodes efficiently is developed. Also, various variance reduction techniques are applied to compute the system reliability to enhance the simulation performance. As a numerical example, a large scale network is given. The comparisons of the path set algorithm and the variance reduction techniques are discussed.

  • PDF

Phonetic Transcription based Speech Recognition using Stochastic Matching Method (확률적 매칭 방법을 사용한 음소열 기반 음성 인식)

  • Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.696-700
    • /
    • 2007
  • A new method that improves the performance of the phonetic transcription based speech recognition system is presented with the speaker-independent phonetic recognizer. Since SI phoneme HMM based speech recognition system uses only the phoneme transcription of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the speaker dependent system due to the phoneme recognition errors generated from using SI models. A new training method that iteratively estimates the phonetic transcription and transformation vectors is presented to reduce the mismatch between the training utterances and a set of SI models using speaker adaptation techniques. For speaker adaptation the stochastic matching methods are used to estimate the transformation vectors. The experiments performed over actual telephone line shows that a reduction of about 45% in the error rates could be achieved as compared to the conventional method.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

Analysis of a Distributed Stochastic Search Algorithm for Ship Collision Avoidance (선박 충돌 방지를 위한 분산 확률 탐색 알고리즘의 분석)

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • It is very important to understand the intention of a target ship to prevent collisions in multiple-ship situations. However, considering the intentions of a large number of ships at the same time is a great burden for the officer who must establish a collision avoidance plan. With a distributed algorithm, a ship can exchange information with a large number of target ships and search for a safe course. In this paper, I have applied a Distributed Stochastic Search Algorithm (DSSA), a distributed algorithm, for ship collision avoidance. A ship chooses the course that offers the greatest cost reduction or keeps its current course according to probability and constraints. DSSA is divided into five types according to the probability and constraints mentioned. In this paper, the five types of DSSA are applied for ship collision avoidance, and the effects on ship collision avoidance are analyzed. In addition, I have investigated which DSSA type is most suitable for collision avoidance. The experimental results show that the DSSA-A and B schemes offered effective ship collision avoidance. This algorithm is expected to be applicable for ship collision avoidance in a distributed system.

A Study on the Backorder Policies for Two-Echelon Distribution System (2계층 분배체계에서의 부재고 정책에 관한 연구)

  • Sohn, Kwon-lk;Yi, Jung-Min
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.37-44
    • /
    • 2001
  • Distribution System is considered as the most important part of SCM when the satisfaction of customer demand is considered. This paper focus on the backorder policies for stockout which is occurred in each regional distribution center of two-echelon distribution system facing stochastic demand process. Four concepts for the efficient system operation are suggested. First, at least 30% reduction of stockout is achieved by introduction of 50/25 allocation policy to distribution system. Second, transportation cost and lead-time of backorder are decreased by allowance of internal supply between regional distribution centers. Third, the frequency of emergency supply is minimized by application of Ship-up-to- expected-demand backorder policies. Finally we suggest several effective rules to select multi-internal suppliers. Simulation tests show the efficiency of our backorder policies and enhancement of customer service level.

  • PDF

A Robust Control Approach for Maneuvering a Flexible Spacecraft

  • Sung, Yoon-Gyeoung;Lee, Jea-Won;Kim, Hunmo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • In the paper, a robust control mechanism is presented to maneuver a flexible spacecraft with the deflection reduction during large slewing operation at the same time. For deflection reduction and maneuvering of the flexible spacecraft, a control mechanism is developed with the application of stochastic optimal sliding-mode control, a linear tracking model and input shaping technique. A start-coast-stop maneuver is employed as a slewing strategy. It is shown that the control mechanism with he strategic maneuver results in better performance and is more efficient than rigid-body-like maneuver, by applying to the Spacecraft Control Laboratory Experiment (SCOLE) system in a space environment.

  • PDF

Output Feedback Control and Its Application to a Flexible Spacecraft

  • Sung, Yoon-Gyeoung;Joo, Hae-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.105-114
    • /
    • 2000
  • An output feedback control (OFC) is presented for a linear stochastic system with known disturbance and applied to a flexible spacecraft for the reduction of residual vibration while allowing the natural deflection during operation. By converting the tracking problem into regulator problem, the OFC minimizes the expected value of a guadratic objective function composing of error stats which always remain on the intersection of sliding hypersurfaces. For the numerical evaluation with a flexible spacecraft, a large slewing maneuver strategy is devised with a tracking model for nominal trajectory and start-cost-stop strategy for economical maneuver in conjunction with the input shaping technique. The performance and efficacy of the proposed control scheme are illustrated with the comparison of different maneuver strategies.

  • PDF

Application of Rainwater Harvesting System Reliability Model Based on Non-parametric Stochastic Daily Rainfall Generator to Haundae District of Busan (비모수적 추계학적 일 강우 발생기 기반의 빗물이용시설 신뢰도 평가모형의 부산광역시 해운대 신시가지 적용)

  • Choi, ChiHyun;Park, MooJong;Baek, ChunWoo;Kim, SangDan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.634-645
    • /
    • 2011
  • A newly developed rainwater harvesting (RWH) system reliability model is evaluated for roof area of buildings in Haeundae District of Busan. RWH system is used to supply water for toilet flushing, back garden irrigation, and air cooling. This model is portable because it is based on a non-parametric precipitation generation algorithm using a markov chain. Precipitation occurrence is simulated using transition probabilities derived for each day of the year based on the historical probability of wet and dry day state changes. Precipitation amounts are selected from a matrix of historical values within a moving 30 day window that is centered on the target day. Then, the reliability of RWH system is determined for catchment area and tank volume ranges using synthetic precipitation data. As a result, the synthetic rainfall data well reproduced the characteristics of precipitation in Busan. Also the reliabilities of RWH system for each of demands were computed to high values. Furthermore, for study area using the RWH system, reduction efficiencies for rooftop runoff inputs to the sewer system and potable water demand are evaluated for 23%, 53%, respectively.