• Title/Summary/Keyword: Stitching Error

Search Result 21, Processing Time 0.019 seconds

Rotational Prism Stitching Interferometer for High-resolution Surface Testing (고해상도 표면 측정을 위한 회전 프리즘 정합 간섭계)

  • In-Ung Song;Woo-Sung Kwon;Hagyong Khim;Yun-Woo Lee;Jong Ung Lee;Ho-Soon Yang
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • The size of an optical surface can significantly affect the performance of an optical system, and high spatial frequency errors have a greater impact. Therefore, it is crucial to measure the surface figure error with high frequency. To address this, a new method called rotational prism stitching interferometer (RPSI) is proposed in this study. The RPSI is a type of stitching interferometer that enhances spatial resolution, but it differs from conventional stitching interferometers in that it does not require the movement of either the mirror tested or the interferometer itself to obtain sub-aperture interferograms. Instead, the RPSI uses a beam expander and a rotating Dove prism to select particular sub-apertures from the entire aperture. These sub-apertures are then stitched together to obtain a full-aperture result proportional to the square of the beam expander's magnification. The RPSI's effectiveness was demonstrated by measuring a 40 mm diameter spherical mirror using a three-magnification beam expander and comparing the results with those obtained from a commercial interferometer. The RPSI achieved surface testing results with nine times higher sampling density than the interferometer alone, with a small difference of approximately 1 nm RMS.

Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method (파노라마 고속화 생성을 위한 3차원 회전각 전처리와 가중치 블랜딩 기법)

  • Cho, Myeongah;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.235-245
    • /
    • 2018
  • Recently panoramic image overcomes camera limited viewing angle and offers wide viewing angle by stitching plenty of images. In this paper, we propose pre-processing and post-processing algorithm which makes speed and accuracy improvements when making panoramic images. In pre-processing, we can get camera sensor information and use three-dimensional rotation angle to find RoI(Region of Interest) image. Finding RoI images can reduce time when extracting feature point. In post-processing, we propose weighted minimal error boundary cut blending algorithm to improve accuracy. This paper explains our algorithm and shows experimental results comparing with existing algorithms.

Real-time multiple face recognition system based on one-shot panoramic scanning (원샷 파노라믹 스캐닝 기반 실시간 다수 얼굴 인식 시스템)

  • Kim, Daehwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.553-555
    • /
    • 2022
  • This paper is about a real-time automatic face recognition system based on one-shot panoramic scanning. It detects multiple faces in real time through a single panoramic scanning process and recognizes pre-registered faces. Instead of recognizing multiple faces within a single panoramic image, multiple faces are recognized using multiple images obtained in the scanning process. This reduces the panorama image creation time and stitching error, and at the same time can improve the face recognition performance by using the accumulated information of multiple images. It is expected that it can be used in various applications such as a multi-person smart attendance system with only a simple image acquisition device.

  • PDF

Flip Error Resistant Stitching in Sensor Network Localization (센서네트워크의 위치추정에 있어 플립오류에 강건한 스티칭 기법)

  • Kwon, Oh-Heum;Park, Sang-Joon;Song, Ha-Joo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.1
    • /
    • pp.24-33
    • /
    • 2009
  • In patch-and-stitch localization algorithms, a flip error refers to the kind of error in which a patch is stitched to the map as being wrongly reflected. In this paper, we present an anchor-free localization algorithm which tries to detect and prevent flip errors. The flip error prevention is achieved by two filtering mechanisms: the flip-ambiguity test and the flip-conflict detection. We evaluate the performances of proposed techniques though simulations and show that they achieve significant performance improvements.

Prostate MR and Pathology Image Fusion through Image Correction and Multi-stage Registration (영상보정 및 다단계 정합을 통한 전립선 MR 영상과 병리 영상간 융합)

  • Jung, Ju-Lip;Jo, Hyun-Hee;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.700-704
    • /
    • 2009
  • In this paper, we propose a method for combining MR image with histopathology image of the prostate using image correction and multi-stage registration. Our method consists of four steps. First, the intensity of prostate bleeding area on T2-weighted MR image is substituted for that on T1-weighted MR image. And two or four tissue sections of the prostate in histopathology image are combined to produce a single prostate image by manual stitching. Second, rigid registration is performed to find the affine transformations that to optimize mutual information between MR and histopathology images. Third, the result of affine registration is deformed by the TPS warping. Finally, aligned images are visualized by the intensity intermixing. Experimental results show that the prostate tumor lesion can be properly located and clearly visualized within MR images for tissue characterization comparison and that the registration error between T2-weighted MR and histopathology image was 0.0815mm.

An X-ray Image Panorama System Using Robust Feature Matching and Per ception-Based Image Enhancement

  • Wang, Weiwei;Gwun, Oubong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.569-576
    • /
    • 2012
  • This paper presents an x-ray medical image panorama system which can overcome the smallness of the images that exist on a source computer during remote medical processing. In the system, after the standard medical image format DICOM is converted to the PC standard image format, a MSR algorithm is used to enhance X-ray images of low quality. Then SURF and Multi-band blending are applied to generate a panoramic image. Also, this paper evaluates the proposed SURF based system through the average gray value error and image quality criterion with X-ray image data by comparing with a SIFT based system. The results show that the proposed system is superior to SIFT based system in image quality.

Real-time panoramic stitching algorithm robust to alignment error accumulation (정렬 오류 누적에 강인한 실시간 파노라마 합성 방법)

  • Kim, Beom Su;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.381-384
    • /
    • 2012
  • 모바일 기기에서 연속적으로 입력되는 영상을 파노라마 합성을 하여 사용자에게 실시간으로 결과를 보여주는 기존의 실시간 파노라마 기법은 트래킹을 기반으로 하고 이미 채워진 영역은 재투영 하지 않기 때문에, 정렬 오류가 누적되고 누적된 정렬 오류가 결과 영상에 그대로 반영되는 문제가 있다. 이를 해결하기 위하여 본 논문에서는 실시간으로 합성된 파노라마 결과에서 정렬 오류가 존재하는 부분과 장면에서 움직이는 물체가 투영된 부분을 판별하고 이 부분만을 다시 투영하는 방법을 제안한다. 정렬 오류가 발생한 부분을 판별하기 위하여, 시간차가 존재하는 여러 장의 영상을 정렬한 후 같은 위치의 픽셀에 속하는 컬러 값을 큐에 저장한다. 정렬 오류가 발생하거나, 움직이는 물체가 존재하는 경우 큐에 저장된 컬러 값의 차이가 커지게 되고 이러한 부분은 다시 투영하여 파노라마 결과 영상에서 오류를 보정하게 된다. 또한 정렬 오류를 최대한 보정하기 위하여 두 단계로 이루어진 블렌딩 방법을 제안한다. 제안하는 방법은 실시간으로 동작하연서 정렬 오류가 발생한 부분을 효과적으로 판별하여 기존의 방법에 비하여 정렬 오류가 줄어듦을 확인하였다.

  • PDF

3D Image Process by Template Matching and B-Spline Interpolations (템플릿 정합과 B-Spline 보간에 의한 3차원 광학 영상 처리)

  • Joo, Young-Hoon;Yang, Han-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.683-688
    • /
    • 2009
  • The purposes of this paper is to propose new techniques to reconstruct measured optical images by using the template matching and B-Spline interpolation method based on image processing technology. To do this, we detect the matching template and non-matching template from each optical image. And then, we match the overlaped images from base level by correcting roll, pitch, and yaw error of images. At last, the matching image is interpolated by B-Spline interpolation. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Design and Implementation of an Absolute Position Sensor Based on Laser Speckle with Reduced Database

  • Tak, Yoon-Oh;Bandoy, Joseph Vermont B.;Eom, Joo Beom;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.362-369
    • /
    • 2021
  • Absolute position sensors are widely used in machine tools and precision measuring instruments because measurement errors are not accumulated, and position measurements can be performed without initialization. The laser speckle-based absolute position sensor, in particular, has advantages in terms of simple system configuration and high measurement accuracy. Unlike traditional absolute position sensors, it does not require an expensive physical length scale; instead, it uses a laser speckle image database to measure a moving surface position. However, there is a problem that a huge database is required to store information in all positions on the surface. Conversely, reducing the size of the database also decreases the accuracy of position measurements. Therefore, in this paper, we propose a new method to measure the surface position with high precision while reducing the size of the database. We use image stitching and approximation methods to reduce database size and speed up measurements. The absolute position error of the proposed method was about 0.27 ± 0.18 ㎛, and the average measurement time was 25 ms.

Advanced tube formation assay using human endothelial colony forming cells for in vitro evaluation of angiogenesis

  • Lee, Hyunsook;Kang, Kyu-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.705-712
    • /
    • 2018
  • The tube formation assay is a widely used in vitro experiment model to evaluate angiogenic properties by measuring the formation of tubular structures from vascular endothelial cells (ECs). In vitro experimental results are crucial when considered the advisability of moving forward to in vivo studies. Thus, the additional attentions to the in vitro assay is necessary to improve the quality of the pre-clinical data, leading to better decision-making for successful drug discovery. In this study, we improved the tube formation assay system in three aspects. First, we used human endothelial colony forming cells (ECFCs), which are endothelial precursors that have a robust proliferative capacity and more defined angiogenic characteristics compared to mature ECs. Second, we utilized a real-time cell recorder to track the progression of tube formation for 48 hours. Third, to minimize analysis error due to the limited observation area, we used image-stitching software to increase the microscope field of view to a $2{\times}2$ stitched area from the $4{\times}$ object lens. Our advanced tube formation assay system successfully demonstrated the time-dependent dynamic progression of tube formation in the presence and absence of VEGF and FGF-2. Vatalanib, VEGF inhibitor, was tested by our assay system. Of note, $IC_{50}$ values of vatalanib was different at each observation time point. Collectively, these results indicate that our advanced tube formation assay system replicates the dynamic progression of tube formation in response to angiogenic modulators. Therefore, this new system provides a sensitive and versatile assay model for evaluating pro- or anti-angiogenic drugs.