• Title/Summary/Keyword: Stitching Calibration

Search Result 8, Processing Time 0.022 seconds

Real-Time Compressed Video Acquisition System for Stereo 360 VR (Stereo 360 VR을 위한 실시간 압축 영상 획득 시스템)

  • Choi, Minsu;Paik, Joonki
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.965-973
    • /
    • 2019
  • In this paper, Stereo 4K@60fps 360 VR real-time video capture system which consists of video stream capture, video encoding and stitching module is been designed. The system captures stereo 4K@60fps 360 VR video by stitching 6 of 2K@60fps stream which are captured through HDMI interface from 6 cameras in real-time. In video capture phase, video is captured from each camera using multi-thread in real-time. In video encoding phase, raw frame memory transmission and parallel encoding are used to reduce the resource usage in data transmission between video capture and video stitching modules. In video stitching phase, Real-time stitching is secured by stitching calibration preprocessing.

Study on 3 DoF Image and Video Stitching Using Sensed Data

  • Kim, Minwoo;Chun, Jonghoon;Kim, Sang-Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4527-4548
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from inertia sensors to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw, pitch, and roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data. In addition, the stitching accuracy of video data was improved using the same sensed data, with discrete calculation of homograph matrix. The experimental results for stitching accuracies and speed using sensed data are presented in this paper.

Dynamic Stitching Algorithm for 4-channel Surround View System using SIFT Features (SIFT 특징점을 이용한 4채널 서라운드 시스템의 동적 영상 정합 알고리즘)

  • Joongjin Kook;Daewoong Kang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.56-60
    • /
    • 2024
  • In this paper, we propose a SIFT feature-based dynamic stitching algorithm for image calibration and correction of a 360-degree surround view system. The existing surround view system requires a lot of processing time and money because in the process of image calibration and correction. The traditional marker patterns are placed around the vehicle and correction is performed manually. Therefore, in this study, images captured with four fisheye cameras mounted on the surround view system were distorted and then matched with the same feature points in adjacent images through SIFT-based feature point extraction to enable image stitching without a fixed marker pattern.

  • PDF

Enhancement on 3 DoF Image Stitching Using Inertia Sensor Data (관성 센서 데이터를 활용한 3 DoF 이미지 스티칭 향상)

  • Kim, Minwoo;Kim, Sang-Kyun
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.51-61
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from an inertia sensor to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw angles, pitch angles, roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data.

ROI Based Real Time Image Stitching Using the Directionality of the Image (영상의 방향성을 이용한 ROI 기반 실시간 파노라마 영상 정합)

  • Nam, Ki-Hun;Choi, Se-Jin
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.420-423
    • /
    • 2016
  • In this paper, we proposed an implementation of panoramic image stitching that operates in real time at the embedded environment by applying ROI based PROSAC algorithm using the directionality of the image. The conventional panoramic image stitching applies SURF or SIFT algorithm which contains unnecessary computation and a lots of data to detect feature points. In this paper, we use the direction of the input image and we proposed the method of reducing the unnecessary computation by using ROI. We use a gyro sensor and an acceleration sensor. Output data from gyro and acceleration sensors can be calibrated by complementary filter. The calibration does not affect the operating time of the proposed image stitching algorithm in embedded environment. Therefore, it is possible to operate in real-time.

Feature Based Multi-Resolution Registration of Blurred Images for Image Mosaic

  • Fang, Xianyong;Luo, Bin;He, Biao;Wu, Hao
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • Existing methods for the registration of blurred images are efficient for the artificially blurred images or a planar registration, but not suitable for the naturally blurred images existing in the real image mosaic process. In this paper, we attempt to resolve this problem and propose a method for a distortion-free stitching of naturally blurred images for image mosaic. It adopts a multi-resolution and robust feature based inter-layer mosaic together. In each layer, Harris corner detector is chosen to effectively detect features and RANSAC is used to find reliable matches for further calibration as well as an initial homography as the initial motion of next layer. Simplex and subspace trust region methods are used consequently to estimate the stable focal length and rotation matrix through the transformation property of feature matches. In order to stitch multiple images together, an iterative registration strategy is also adopted to estimate the focal length of each image. Experimental results demonstrate the performance of the proposed method.

Multiple Camera Calibration for Panoramic 3D Virtual Environment (파노라믹 3D가상 환경 생성을 위한 다수의 카메라 캘리브레이션)

  • 김세환;김기영;우운택
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.137-148
    • /
    • 2004
  • In this paper, we propose a new camera calibration method for rotating multi-view cameras to generate image-based panoramic 3D Virtual Environment. Since calibration accuracy worsens with an increase in distance between camera and calibration pattern, conventional camera calibration algorithms are not proper for panoramic 3D VE generation. To remedy the problem, a geometric relationship among all lenses of a multi-view camera is used for intra-camera calibration. Another geometric relationship among multiple cameras is used for inter-camera calibration. First camera parameters for all lenses of each multi-view camera we obtained by applying Tsai's algorithm. In intra-camera calibration, the extrinsic parameters are compensated by iteratively reducing discrepancy between estimated and actual distances. Estimated distances are calculated using extrinsic parameters for every lens. Inter-camera calibration arranges multiple cameras in a geometric relationship. It exploits Iterative Closet Point (ICP) algorithm using back-projected 3D point clouds. Finally, by repeatedly applying intra/inter-camera calibration to all lenses of rotating multi-view cameras, we can obtain improved extrinsic parameters at every rotated position for a middle-range distance. Consequently, the proposed method can be applied to stitching of 3D point cloud for panoramic 3D VE generation. Moreover, it may be adopted in various 3D AR applications.

Real-Time Panoramic Video Streaming Technique with Multiple Virtual Cameras (다중 가상 카메라의 실시간 파노라마 비디오 스트리밍 기법)

  • Ok, Sooyol;Lee, Suk-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.538-549
    • /
    • 2021
  • In this paper, we introduce a technique for 360-degree panoramic video streaming with multiple virtual cameras in real-time. The proposed technique consists of generating 360-degree panoramic video data by ORB feature point detection, texture transformation, panoramic video data compression, and RTSP-based video streaming transmission. Especially, the generating process of 360-degree panoramic video data and texture transformation are accelerated by CUDA for complex processing such as camera calibration, stitching, blending, encoding. Our experiment evaluated the frames per second (fps) of the transmitted 360-degree panoramic video. Experimental results verified that our technique takes at least 30fps at 4K output resolution, which indicates that it can both generates and transmits 360-degree panoramic video data in real time.