• 제목/요약/키워드: Stirrup reinforcement

검색결과 74건 처리시간 0.031초

보 철근공사 조립공법별 작업시간분석 (Work Time Analysis of Rebar Fabrication Method in Beam Construction.)

  • 김주용;김민규;김영길;김광희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.8-9
    • /
    • 2019
  • The rebar work is a labor intensive construction work with a high labor cost ratio. It is difficult to manage the productivity, construction time, and safety of rebar work. The problem of productivity decreased in rebar construction is due to a lack of workers according to the aged workers. Partial prefabrication rebar can be an alternative solution to productivity decreased in rebar work. The characteristic of partial prefabrication method is that time consuming component such as stirrup of beam assemble in factory and others assemble in site. Therefore, in this study, the time required for each rebar assembly method is measured and analyzed to confirm the possibility of productivity improvement.

  • PDF

Effect of anchorage and strength of stirrups on shear behavior of high-strength concrete beams

  • Yang, Jun-Mo;Min, Kyung-Hwan;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.407-420
    • /
    • 2012
  • This study investigated possible ways to replace conventional stirrups used on high-strength concrete members with improved reinforcing materials. Headed bar and high-strength steel were chosen to substitute for conventional stirrups, and an experimental comparison between the shear behavior of high-strength concrete large beams reinforced with conventional stirrups and the chosen stirrup substitutes was made. Test results indicated that the headed bar and the high-strength steel led to a significant reserve of shear strength and a good redistribution of shear between stirrups after shear cracking. This is due to the headed bar providing excellent end anchorage and the high-strength steel successfully resisting higher and sudden shear transmission from the concrete to the shear reinforcement. Experimental results presented in this paper were also compared with various prediction models for shear strength of concrete members.

전단 보강이 없는 FRP RC보의 파괴 거동 (Failure Behavior of FRP RC Beams without Shear Reinforcements)

  • 이재훈;손현아;신성진
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.199-208
    • /
    • 2010
  • FRP bar를 철근 대체제로 활용하기 위해서는 설계 기준의 확립이 시급하나 국내에서는 이 소재에 대한 기초 연구가 부족한 상황이다. 그러므로 2차에 걸쳐 전단보강이 없는 18개의 FRP RC와 4개의 기존 RC 실험체의 거동을 관찰하였다. 1차 실험은 휨 파괴 거동과 사용성 항목의 계측 자료 수집을 목적으로 시작되었다. 휨파괴를 유도하기 위하여 전단배근을 강화하는 대신 그로 인한 거동의 불확실성을 배제하기 위하여 전단지간비만을 조정하여 휨파괴를 유도하고, 전단배근을 사용하지 않기로 하였다. 실험 결과 거의 모든 실험체는 전단파괴 되었으며 실험계획에 적용한 ACI 440.1R과 CSA S806의 전단 강도식이 실제와 큰 편차가 있음을 확인하였다. 1차 실험의 결과를 근거로 2차 실험에서는 전단파괴거동을 집중적으로 관찰하였다. 표준 실험체의 제원은 길이 3,300 mm폭 ${\times}$ 800 mm ${\times}$ 유효깊이 200 mm, 순지간 2,800 mm, 전단지간 1,200 mm로 전단지간비는 6.0이며, 단순지지 조건으로 4점 재하실험을 수행하였다. 검토 변수에는 콘크리트 압축강도, 보강근의 종류 및 탄성계수, 전단지간비, 유효보강비, 다발 배근의 영향, 피복두께의 영향이 포함된다.

전단 보강이 없는 FRP RC보의 전단강도 예측 (Shear Strength Prediction of FRP RC Baem without Shear Reinforcements)

  • 이재훈;신성진
    • 콘크리트학회논문집
    • /
    • 제22권3호
    • /
    • pp.313-324
    • /
    • 2010
  • FRP 보강근은 현장 가공이 용이하지 않고 만곡부에서 강도가 저하되는 등 전단보강근으로 사용하기에는 해결해야 할 문제점이 많다. 전단보강을 필요로 하지 않는 구조요소에 FRP 보강근을 휨보강근으로 사용하는 것은 별 어려움 없이 적용할 수 있다. 교량 바닥판이나 복개시설의 슬래브 등은 대부분 판상 구조로 전단보강이 없는 부재들이며, FRP 보강근을 휨보강근으로 사용하는 경우에는 RC구조에 비하여 전단강도가 높지 않은 특성이 있다. 그러나 이러한 형식의 구조물에 대한 신뢰성 있는 전단강도 산정 기준이 확립되지 않은 상태이다. 이 연구에서는 FRP RC의 전단거동을 관찰한 선행연구 결과와 함께 문헌 조사를 통하여 관련 자료 211개를 축적하고, 각국의 전단강도 산정 기준과 비교 검토하였다. 분석 결과 AIJ, ISE 기준이 가장 우수하였으며, ACI 440.1R-06의 기준은 보수적인 설계를 제공하지만 분산 정도는 ISE와 유사하여 항상 일관성 있는 예측 값을 주는 장점이 있었다. 합리적인 새로운 전단강도식을 개발하기 위하여 표본자료의 전단강도를 가장 잘 설명할 수 있는 회귀모형을 구축하였으며 기존 설계식과 비교 검토하였다. 구축된 회귀모형을 기반으로 정확도가 높고 분산도가 작은 새로운 전단강도식을 제안하였다.

전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석 (Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup)

  • 김성욱;한상묵;강수태;공정식;강준형;전상은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

플랫 플레이트 슬래브와 H형강 기둥 접합부의 구조 성능에 관한 실험적 연구 (An Experimental Study on Structural Performance of H-Steel or SRC Column and Flat Plate Slab Connection)

  • 윤명호;이윤희;유홍식;김진원
    • 복합신소재구조학회 논문집
    • /
    • 제5권2호
    • /
    • pp.9-14
    • /
    • 2014
  • Main topics in this study is a new structural detail for connection between H-Steel or SRC column and flat plate slab. We carried out to evaluate the punching shear performance of H-steel or SRC column + RC slab system for vertical load and lateral load. From the test results structural characteristics - yield moment, yield rotation, maximum moment, deformation capabilities ect. - are obtained and evaluated. In this paper as a shear reinforcement for supporting region of plate closed stirrup type and shear band are used, and their test results are compared.

Load carrying capacity of deteriorated reinforced concrete columns

  • Tapan, Mucip;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제6권6호
    • /
    • pp.473-490
    • /
    • 2009
  • This paper presents a new methodology to evaluate the load carrying capacity of deteriorated non-slender concrete bridge pier columns by construction of the full P-M interaction diagrams. The proposed method incorporates the actual material properties of deteriorated columns, and accounts for amount of corrosion and exposed corroded bar length, concrete loss, loss of concrete confinement and strength due to stirrup deterioration, bond failure, and type of stresses in the corroded reinforcement. The developed structural model and the damaged material models are integrated in a spreadsheet for evaluating the load carrying capacity for different deterioration stages and/or corrosion amounts. Available experimental and analytical data for the effects of corrosion on short columns subject to axial loads combined with moments (eccentricity induced) are used to verify the accuracy of proposed model. It was observed that, for the limited available experimental data, the proposed model is conservative and is capable of predicting the load carrying capacity of deteriorated reinforced concrete columns with reasonable accuracy. The proposed analytical method will improve the understanding of effects of deterioration on structural members, and allow engineers to qualitatively assess load carrying capacity of deteriorated reinforced concrete bridge pier columns.

Effective Punching Shear and Moment Capacity of Flat Plate-Column Connection with Shear Reinforcements for Lateral Loading

  • Song, Jin-Kyu;Kim, Ju-Bum;Song, Ho-Bum;Song, Jeong-Won
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.19-29
    • /
    • 2012
  • In this study, three isolated interior flat slab-column connections that include three types of shear reinforcement details; stirrup, shear stud and shear band were tested under reversed cyclic lateral loading to observe the capacity of slab-column connections. These reinforced joints are 2/3 scale miniatures designed to have identical punching capacities. These experiments showed that the flexural failure mode appears in most specimens while the maximum unbalanced moment and energy absorbing capacity increases effectively, with the exception of an unreinforced standard specimen. Finally, the results of the experiments, as wel l as those of experiments previously carried out by researchers, are applied to the eccentricity shear stress model presented in ACI 318-08. The failure mode is therefore defined in this study by considering the upper limits for punching shear and unbalanced moment. In addition, an intensity factor is proposed for effective widths of slabs that carry an unbalanced moment delivered by bending.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups

  • Kaveh, Ali;Bakhshpoori, Taha;Hamze-Ziabari, Seyed Mahmood
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.197-207
    • /
    • 2018
  • In the present study, group method of data handling networks (GMDH) are adopted and evaluated for shear strength prediction of both FRP-reinforced concrete members with and without stirrups. Input parameters considered for the GMDH are altogether 12 influential geometrical and mechanical parameters. Two available and very recently collected comprehensive datasets containing 112 and 175 data samples are used to develop new models for two cases with and without shear reinforcement, respectively. The proposed GMDH models are compared with several codes of practice. An artificial neural network (ANN) model and an ANFIS based model are also developed using the same databases to further assessment of GMDH. The accuracy of the developed models is evaluated by statistical error parameters. The results show that the GMDH outperforms other models and successfully can be used as a practical and effective tool for shear strength prediction of members without stirrups ($R^2=0.94$) and with stirrups ($R^2=0.95$). Furthermore, the relative importance and influence of input parameters in the prediction of shear capacity of reinforced concrete members are evaluated through parametric and sensitivity analyses.