• Title/Summary/Keyword: Stimulation time

Search Result 954, Processing Time 0.023 seconds

The Effects of Neuromuscular Electrical Stimulation on Swallowing Function in Acute Stroke Patients with Dysphagia

  • Kim, Myung-Kwon;Lee, Chang-Ryeol;HwangBo, Gak
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.98-102
    • /
    • 2011
  • In this study, we investigated the effects of neuromuscular electrical stimulation (NMES) on the treatment of 20 acute stroke patients with dysphagia. For both the treated and control groups, the basic facial stimulation training was conducted for 30 minutes, five times a week, for four weeks. NMES was performed on the treated group only, for 30 minutes each time. Both groups were evaluated according to the functional dysphagia scale (FDS) using a videofluoroscopic swallowing study (VFSS). After the treatment was performed for four weeks, the FDS results of the treated group showed a significance difference in oral transit time in the oral phase and in the triggering of pharyngeal swallow fluid, laryngeal elevation and epiglottic closure, nasal penetration, residue in valleculae, coating of pharyngeal wall after swallow fluid, and pharyngeal transit time in the pharyngeal phase. In addition, the treated group showed a significant difference in laryngeal elevation and epiglottic closure, nasal penetration, and pharyngeal transit time in the pharyngeal phase after the treatment compared to the control group. The results of this study showed that neuromuscular electrical stimulation may be an effective method of treating dysphagia in acute phase stroke patients.

Musculotendon Model to Represent Characteristics of Muscle Fatigue due to Functional Electrical Stimulation (기능적 전기자극에 의한 근육피로의 특성을 표현하는 근육 모델)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1046-1053
    • /
    • 1999
  • The musculotendon model is presented to show the declines in muscle force and shortening velocity during muscle fatigue due to the repeated functional electrical stimulation (FES). It consists of the nonlinear activation and contraction dynamics including physiological concepts of muscle fatigue. The activation dynamics represents $Ca^{2+}$ binding and unbinding mechanism with troponins of cross-bridges in sarcoplasm. It has the constant binding rate or activation time constant and two step nonlinear unbinding rate or inactivation time constant. The contraction dynamics is the modified Hill type model to represent muscle force - length and muscle force - velocity relations. A muscle fatigue profile as a function of the intracellular acidification, pH is applied into the contraction dynamics to represent the force decline. The computer simulation shows that muscle force and shortening velocity decline in stimulation time. And we validate the model. The model can predicts the proper muscle force without changing its parameters even when existing the estimation errors of the optimal fiber length. The change in the estimate of the optimal fiber length has an effect only on muscle time constant in transient period not on the tetanic force in the steady-state and relaxation periods.

  • PDF

Effects of Cranial Electrotherapy Stimulation on Electrocephalogram

  • Lee, Jeongwoo;Lee, Hyejein;Park, Woongsik
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1687-1694
    • /
    • 2019
  • Background: Although cranial electrotherapy stimulation (CES) is reported to have positive effects on mental functions such as depression and sleep improvement, detailed studies regarding awakening, attention and concentration among brain waves reflecting brain activity are lacking. Objective: To examine the effects of cranial electrotherapy stimulation (CES) on various electroencephalograms (EEGs) reflecting brain activities. Design: Randomized controlled clinical trial (single blind) Methods: This study selected 30 healthy adult women in their 20s who volunteered for this experiment. A total of 30 subjects were randomly assigned to three groups (Sham group, 0.5 Hz CES group, and 100 Hz CES group). EEGs were measured before and after the single CES, and the results were compared and analyzed. Results: The relative theta, alpha, and gamma waves indicated no significant differences in the interaction effects between time and group. The relative fast alpha wave only showed significant differences in the interaction effects between time and group in P4. The relative slow beta wave only indicated statistically significant differences in the interaction effects between time and group in T3 and T4. The relative mid and fast beta waves showed statistically significant differences in the interaction effects between time and group in all areas. Conclusions: These results suggest that a CES of 0.5 Hz awakens consciousness and has a positive influence on brain activity, while a CES of 100 Hz has a positive influence on thinking activity accompanying mental load during concentrating on one subject.

A Comparison of Muscle Strength by Russian Current and Low Frequency Current Stimulation in Normal Adult (정상성인에서 러시안 전류와 저주파 전류 자극에 의한 근력 증가의 비교)

  • Kim, Jong-Youl
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.3
    • /
    • pp.353-360
    • /
    • 2011
  • Purpose : The purpose of this study was to compare the effect of muscle strength by stimulation of russian current and low frequency. Methods : The subjects were thirty young healthy volunteers who were divided into two groups including russian current group(n=15) and low frequency group(n=15). The intervention was applied totally 12 times (1 time, 10 minute) for 4weeks in each group. The peak torque and average power were measured and analysed using Biodex system 4 before the treatment, after 2 weeks, 4 weeks. Results : As a result, russians currents and low frequency stimulation increased significantly average power and peak torque with the lapse of time. However, there were not significant differences of the average power and peak torque between the groups in all periods. Conclusion : In conclusion, russians currents and low frequency stimulation had no differences in the increase of muscle strength.

Dependence of Alternating Magnetic Field Intensity on Proliferation Rate of Human Breast Cancer Cell

  • Park, Hyeji;Lee, Hyun Sook;Hwang, Do Guwn
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.290-294
    • /
    • 2015
  • To investigate the effects of alternating magnetic field intensity and stimulation time on the proliferation of human breast cancer cells (BT-20), we cultured the cells under a magnetic field with a saw tooth waveform of 2 kHz. The field intensities varied from 3 to 7 mT, and the stimulation time varied from 24 to 72 hours. Cell proliferation decreased dramatically to 40% during magnetic stimulation for 72 hours at 5 mT. However, the cells were not affected by a strong magnetic field of 7 mT. The p-values obtained using statistical package for social science software were below 0.05 for 5-7 mT. This means that the results have statistical significance. However, it is difficult to explain our results based on the physiology of cell membranes, which have various ionic flows at ion channels.

Changes in Median Frequency of Quadriceps Muscle According to Application Modes of Neuromuscular Electrical Stimulation (신경근전기자극 적용양식에 따른 대퇴사두근의 중앙주파수 변화)

  • Choi, Soo-Hee;Oh, Myung-Hwa;Kim, Tae-Youl;Jeong, Jin-Gyu
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.3 no.1
    • /
    • pp.49-59
    • /
    • 2005
  • This study assigns each 8 of 24 normal persons to control group(Group I), strength increase group(Group II) and endurance increase group(Group III) to analyze differences in changes of strength and endurance with surface electromyography and kinetics according to application modes of neuromuscular electrical stimulation(NMES). Group I had not any treatment, group II performed 15 repeated contraction with 60% intensity of maximal voluntary isometric contraction(MVIC) by setting 10-sec on time and 50-sec off time and group III conducted 30 repeated contraction with 30% intensity of MVIC by setting 10-sec on time and 20-sec off time. For neuromuscular electrical stimulation, 2,500 Hz of Russian current, 35 pps of pulse rate and 200 of pulse width. Neuromuscular electrical stimulation was conducted by five times for total 4 weeks. Before and after experimentmotor unit action potential of vastus medialis, rectus femoris and vastus lateralis were measured with sEMG, median frequency(MDF) was analyzed, and thus the following results were obtained. There was significant difference in the period of measuring vastus medialis and rectus femoris in change of MDF and interaction among groups with analysis of surface electromyography before and after neuromuscular electrical stimulation(p<.001) and in particular, there was a remarkable change among groups according to the period of measurement. In conclusion, NMES influenced changes of strength and endurance according to its application modes and in particular, it was found that strength increment application had a significant influence on strength increment in applying short-time NMES.

  • PDF

Comparison of Mycobacterium tuberculosis Specific Antigen Stimulation Time for Performing Interferon Gamma mRNA Assay for Detecting Latent Tuberculosis Infection

  • Kim, Sunghyun;Cho, Jang-Eun;Kim, Hyunjung;Lee, Dongsup;Jeon, Bo-Young;Lee, Hyejon;Cho, Sang-Nae;Kim, Young Keun;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.90-97
    • /
    • 2013
  • The tuberculin skin test (TST) and interferon gamma (IFN-${\gamma}$) release assay (IGRA) have been widely used for diagnosis of latent tuberculosis infection (LTBI). In order to overcome limitations of current LTBI diagnostic methods, the development of a novel molecular assay which is able to measure the IFN-${\gamma}$ messenger RNA (mRNA) expression level after stimulation with Mycobacterium tuberculosis (MTB) specific antigen was recently developed. The ability of a molecular assay to detect MTB infection was similar to commercial IGRA however, the optimal incubation time for stimulating IFN-${\gamma}$ was not yet established. Therefore, in this study the direct comparisons of MTB Ag stimulation times (4 and 24 hrs) were performed for diagnosis of MTB infection. Data showed that the coincident rate between QFT-GIT IFN-${\gamma}$ ELISA and IFN-${\gamma}$ RT-PCR (4 hrs) was 88.35% and that of QFT-GIT and IFN-${\gamma}$ RT-PCR (24 hrs) was 70.85%. Based on a receiver operating characteristic (ROC) curve, the 4 hrs-MTB specific Ag stimulation time for IFN-${\gamma}$ RT-PCR had the significant P value, 95% CI value, and AUC (P < 0.0001, 95% CI=0.82 to 1.02, and AUC=0.9214) in comparison with 24 hrs-MTB specific Ag stimulation time (P = 0.009, 95% CI=0.06 to 0.94, and AUC=0.7711). These results show that 4-hr was the most optimal MTB Ag stimulation time for performing IFN-${\gamma}$ RT-PCR. Although semi-quantitative RT-PCR had a few analytical limitations, it might be useful as an alternative molecular diagnostic method for detecting MTB infection.

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

The Effects of Laser Beam Stimulation on Blood Status and Concentration of Endocrine Substances in Dogs (레이저광선자극이 개의 혈액상과 내분비물질의 혈중농도에 미치는 영향)

  • 조용성;차용호
    • Journal of Veterinary Clinics
    • /
    • v.14 no.2
    • /
    • pp.208-214
    • /
    • 1997
  • The objective of this study was (a) to examine the change of bloodchemistry and (b) to investigate the secretion trend of endocrinological substance in a dog model after laser-beam radiation at different level of frequency (250 Hz, 2,000 Hz, 5,000 Hz and 8,000 Hz). The experimental groups were divided into four groups were divided into four groups on the basis of the level of frequency radiated and stimulated for five minutes. Before stimulation and after a lapse of time (10-minute, 30-minute and 60-minute) all dogs were checked the following parameters; cortisol, ACTH, RBC, hemoglobin, hematocrit, WBC, Ca, P, ALT, AST and creatinine. The results were as follow: ten minutes after stimulation, cortisol level of 250 Hz group, 2,000 Hz group, 5,000 Hz group and 8,000 Hz group was increased 18.8%, 20.5%, 23.2% and 309%, respectively. Ten minutes after stimulation, ACTH level of 250 Hz group, 2,000 Hz group, 5,000 Hz group and 8,000 Hz group was increased 26.7%, 26.6%, 30.5% and 29.5%, respectively. It began to decrease and at 30-minute after stimulation resturned to pre-stimulation level at 60-minute after stimulation. In blood examination RBC, hemaoglobin, hematocrit and WBC level showed slight increase and decrease and returned to pre-stimulation level at 60-minute after radiation. In bloodchemical examination serum calcium, inorganic phosphorus, ALT, AST and creatinine level were within normal physiological ranges.

  • PDF

The Effects of Transcutaneous Electrical Nerve Stimulation and Microampere Electrical Nerve Stimulation on Sympathetic Tone in Healthy Subjects (경피신경전기자극과 미세전류자극이 정상인의 교감신경 긴장도에 미치는 영향)

  • Park Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.9 no.1
    • /
    • pp.51-57
    • /
    • 1997
  • The purpose of this study was to determine the effect of two different forms of transcutaneous electrical nerve stimulation(TENS) and one of microcurrent high voltage pulsed galvanic current(HVPC) on sympathetic tone in healthy subjects. Fourty subjects received TENS(20) and PVPC(30) during short time(20min). Left finger tip skin temperatures were measured at four interval for each treatment : 1) before treatment, 2) after 10 minutes treatment, 3)after 20 minutes treatment, and 4) after 10 minutes rest. The results were as follows. 1) TENS treatment group increased skin temperature after treatment 20 minutes, but HVPC treatment increased akin temperature after 10 minutes and recovered normal skin temperature after 10 minutes treatment. It means that short time(20min) electrical stimulation decreased sympathetic activities. 2) Sympathetic activities of TENS stimulation were influenced by age, but HVPC were not. 3) During 10 minutes, both treatment increased sympathetic activities, but HVPC treatment reversed sympathetic activity more rapidly than TENS. 4) The changes of skin temperature means by sex, males in TENS treatment group were higher than females, but HVPC were reverted.

  • PDF